AP Calculus TEST: 2.1-2.4, NO CALCULATOR

Part Ein: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question.

Graph of f

1. The graph of a function f is shown above. Which of the following could be the graph of f', the derivative of f?

2. In the xy-plane, the line x + y = k, where k is a constant, is tangent to the graph of $y = x^2 + 3x + 1$. What is the value of k?

$$(A) -3 \qquad (B) -2$$

$$(B) -2$$

$$(C) -1$$

$$f(x) = \begin{cases} cx + d & \text{for } x \le 2\\ x^2 - cx & \text{for } x > 2 \end{cases}$$

- 3. Let f be the function defined above, where c and d are constants. If f is differentially at x = 2, what is the value of c+d?
- _____4. If $y = \frac{2x+3}{3x+2}$, then $\frac{dy}{dx} =$

- (A) $\frac{12x+13}{(3x+2)^2}$ (B) $\frac{12x-13}{(3x+2)^2}$ (C) $\frac{5}{(3x+2)^2}$ (D) $\frac{-5}{(3x+2)^2}$ (E) $\frac{2}{3}$

- (C) -3 (D) π
- (E) DNE

Graph of f

6.	The graph of a function	f is shown above.	At which value of	x is	s f c	continuous,	but not
	differentiable?						

- (A) a
- (B) b
- (C) c
- (D) d

$$g(x) = \begin{cases} x+2, & x \le 3 \\ 4x-7, & x > 3 \end{cases}$$

- 7. Let f be the function given above. Which of the following statements are true about g?
 - I. $\lim g(x)$ exists
 - II. g is continuous at x = 3
 - III. g is differentiable at x = 3
 - (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

28. If
$$c(n)$$
 measures the about calories a math student burns taking an AP calculus test with respect to n , the number of problems he/she has successfully completed, what is the practical meaning of the $c'(8) = 480$?

- (A) When the student has 8 problems answered correctly, he has burned 480 calories.
- (B) When the student has burned 8 calories, the student is burning calories at 480 calories per question.
- (C) When the student has 8 problems answered correctly, the ice cream company KNOWS!!
- (D) When the student has 8 problems answered correctly, he/she is burning 480 calories per question.
- (E) When the student has burned 8 calories, he/she is correctly answering 480 questions per calorie.

_____9. An equation of the line normal to the graph of
$$y = x^3 + 3x^2 + 7x - 1$$
 is

(A)
$$4x + 3y = -10$$

(B)
$$x-4y=23$$

(C)
$$4x - y = 2$$

(D)
$$x + 4y = 25$$

(A)
$$4x+3y=-10$$
 (B) $x-4y=23$ (C) $4x-y=2$ (D) $x+4y=25$ (E) $x+4y=-25$

_____ 10. If
$$f(x) = (x-1)\sin x$$
, then $f'(0) =$

$$(A) -2 \qquad (B) -1$$

$$(B)$$
 –

_____11. If
$$f(x) = 3-4|x+5|$$
 for all x, then the value of the derivative $f'(x)$ at $x = -5$ is

$$(A) -4 \qquad (B) 0$$

Part Dos: Free Response—Do all work below the line.

12. If
$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 6x + 4$$

- (a) Let k(x) = f'(x). Find k(x) and k'(x).
- (b) Find k(-1) and k'(-1).
- (c) Find the equation of the <u>tangent</u> line, in Taylor Form, of k(x) at x = -1.
- (d) Find the equation of the <u>normal</u> line, in Taylor Form, of k(x) at x = -1.
- (e) The equation of the normal line to k(x) at x = -1 intersects the graph of k(x) at another x-value. Find this x-value. Show the work that leads to your answer.