AP Calculus TEST: 2.1-2.3, NO CALCULATOR

Part I: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question. Attach any scratch work to the back of this test upon completion.

1. In the xy-plane, the line 6x + y = 2, where k is a constant, is tangent to the graph of $y = 2k + x^2$. What is the value of k?

$$(A) -3$$

(A)
$$-3$$
 (B) 3 (C) $-\frac{2}{11}$ (D) 2 (E) $\frac{11}{2}$

(E)
$$\frac{11}{2}$$

2. Which of the following is/are true regarding the function f(x) = 3 - |6x + 12|?

I.
$$f'(-2) = DNE$$

II.
$$f'(0) = 6$$

III. f(x) is continuous for all x

- (A) I only (B) III only (C) I and II only (D) I, II, and III (E) I and III only

$$f(x) = \begin{cases} ax^2 + bx + 1 & \text{for } x \le -2\\ -3ax + 2b & \text{for } x > -2 \end{cases}$$

3. Let f be the function defined above, where a and b are constants. If f is differentially at x = -2, what is the value of $a \div b$?

(A) -3 (B) $\frac{1}{6}$ (C) 1 (D) 6 (E) No such values exist

4. If $y = 3x^2(x+2)^2$, then $\frac{dy}{dx} =$

- (A) $12x^3 + 18x^2 + 24x$ (B) $12x^3 + 36x^2 + 24x$ (C) $12x^3 + 24x$ (D) $12x^3 + 12x$ (E) $9x^2 + 12x$

6. The graph of a function f(x) is given above. The graph of f(x) has a vertical asymptote at x = 0, a vertical tangent line at x = 4, and x-intercepts at x = -4, x = -0.5, and x = 1. For what values of x is the function f(x) is **not** differentiable?

I. x = -4

II. x = 0

III. x = 3

IV. x = 4

- (A) I & II only (B) I, II, & III only
- (C) I, II, & IV only
- (D) I & IV only
- (E) I, II, III, & IV

$$g(x) = \begin{cases} 6x - 2, & x < -1 \\ -3x^2 - 5, & x \ge -1 \end{cases}$$

- 7. Let g be the function given above. Which of the following statements are true about g?
 - I. $\lim_{x \to -1} g(x)$ exists
 - II. g is continuous at x = -1
 - III. g is differentiable at x = -1
 - (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

$$\lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x - 1}$$

- _ 8. The above limit represents f'(c), the derivative of some function f(x) at some x = c. What are f(x) and x = c?
 - (A) $f(x) = \sqrt{x+3}$, c = 1 (B) $f(x) = \sqrt{x+3} 2$, c = 1 (C) $f(x) = \sqrt{x+3}$, c = 2(D) $f(x) = \sqrt{x}$, c = 3 (E) $f(x) = \sqrt{x+2}$, c = 1
- - (A) $\frac{-10x^2 1}{3\sqrt[3]{x^4}}$ (B) $\frac{10x^2 + 1}{3\sqrt[4]{x^3}}$ (C) $\frac{10x^2 1}{3\sqrt[4]{x^3}}$ (D) $\frac{10x^2 1}{3\sqrt[3]{x^4}}$ (E) $\frac{10x^2 + 1}{3\sqrt[3]{x^4}}$

10. If
$$f(x) = x^3 + 2x^2 + 4x + 3$$

(a) Let P(x) = f'(x). Find P(x) and P'(x).

(b) Find P(1) and P'(1).

(c) Find the equation of the <u>tangent</u> line, in Taylor Form, of P(x) at x = 1.

(d) Find the equation of the <u>normal</u> line, in Taylor Form, of $P(x)$ at $x = 1$.
(a) The equation of the normal line to $D(x)$ at $x=1$ intersects the graph of $D(x)$ at enother x value. Find this
(e) The equation of the normal line to $P(x)$ at $x = 1$ intersects the graph of $P(x)$ at another x-value. Find this
<i>x</i> -value. Show the work that leads to your answer.