AP Calculus TEST: 2.1-2.4, NO CALCULATOR

Part Ein: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question.

1. In the xy-plane, the line x + y = k, where k is a constant, is tangent to the graph of $y = x^2 + 3x + 1$. What is the value of k?

$$(A) -3$$

(B)
$$-2$$

$$(C) -1$$

(D)
$$0$$

$$f(x) = \begin{cases} cx + d & \text{for } x \le 2\\ x^2 - cx & \text{for } x > 2 \end{cases}$$

2. Let f be the function defined above, where c and d are constants. If f is differentially at x = 2, what is the value of c+d?

$$(A) -4$$

(B)
$$-2$$
 (C)

3. If
$$y = \frac{2x+3}{3x+2}$$
, then $\frac{dy}{dx} = (A) \frac{12x+13}{(3x+2)^2}$ (B) $\frac{12x-13}{(3x+2)^2}$ (C) $\frac{5}{(3x+2)^2}$ (D) $\frac{-5}{(3x+2)^2}$ (E) $\frac{2}{3}$

$$\underline{\qquad} 4. \lim_{h \to 0} \frac{3\sec(\pi+h) - 3\sec\pi}{h} = (A) -1 (B) 0 (C) -3$$

$$(C) -3$$

(D)
$$\pi$$

_____ 5. The graph of a function f is shown at right. At which value of x is fcontinuous, but not differentiable?

 $g(x) = \begin{cases} x+2, & x \le 3 \\ 4x-7, & x > 3 \end{cases}$ 6. Let g be the function given above. Which of the following statements are true about g?

I.
$$\lim_{x\to 3} g(x)$$
 exists

II. g is continuous at x = 3

III. g is differentiable at x = 3

- (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

2 7. The function f is continuous on [-3,2] and has values given in the table below. If the equation f(x) = 2 has at least 2 solutions in the interval (-3,2) if k =

• • •		/	
X	-3	0	2
f(x)	5	k	3.2
	(A) 5 (B) 3.2 (C	(D) 10 (E) -3	

8. If
$$f(x) = (x-1)\sin x$$
, then $f'(0) = (A) -2$ (B) -1 (C) 0

$$(A) -2$$

$$(B) - B$$

$$(\mathbf{C}) 0$$

_____9. If f(x) = 3 - 4|x + 5| for all x, then the value of the derivative f'(x) at x = -5 is

$$(A) -4$$

Part Dos: Free Response—Do all work below the line.

10. If
$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 6x + 4$$

- (a) Let k(x) = f'(x). Find k(x) and k'(x).
- (b) Find k(-1) and k'(-1).
- (c) Find the equation of the <u>tangent</u> line, in Taylor Form, of k(x) at x = -1.
- (d) Find the equation of the <u>normal</u> line, in Taylor Form, of k(x) at x = -1.
- (e) The equation of the normal line to k(x) at x = -1 intersects the graph of k(x) at another x-value. Find this x-value. Show the work that leads to your answer.