AP Calculus TEST: 1.1-1.5—Limits and Continuity. No Calculator

Part I: Multiple Choice—write the CAPITAL LETTER in the blank to the left of the problem number.

Use the graph of the function f(x) shown at right to answer questions 1-2.

2. What's the largest value of
$$b$$
 such that $f(x)$ is continuous on $[-7,b]$ but not on $[-7,b+1]$?

(E) No such value exists

3. A function f(x) is continuous for all x. The function satisfies the following:

$$f(1)=10$$
, $f(2)=3$, $f(3)=-5$, and $f(4)=-18$

The IVT says that the equation

(A)
$$f(x) = 8.675309$$
 has a solution for some x with $x < -18$.

(B)
$$f(x) = 8.675309$$
 has a solution for some $x \in (3,4)$.

(C)
$$f(x) = 8.675309$$
 has a solution for some $x \in (2,3)$.

(D)
$$f(x) = 8.675309$$
 has a solution for some $x \in (1,2)$.

(E) It cannot be determined from the information whether f(x) = 8.675309 has a solution.

 $\begin{array}{ll}
4. & f(x) = \begin{cases} \frac{x^2 + 1}{x - 1}, & x < 0 \\ 2x - 1, & 0 \le x \le 3 \\ \sqrt{x + 1}, & x > 3 \end{cases}
\end{array}$

Let f(x) be defined by the piecewise equation above, then f(x) is continuous

(A) for all real numbers

(B) for all $x \neq 0$

(C) for all $x \ne 3$ (D) for all $x \ne 0$, 3 (E) for all $x \ne 0,1$, or 3

 $5. \lim_{x \to 8} \frac{\frac{7}{x} - \frac{1}{2}}{x - 8} =$

(A) DNE (B) -16 (C) 16 (D) $\frac{1}{16}$ (E) $-\frac{1}{16}$

8. $\lim_{x \to 2} \frac{x^3 - x^2 - 3x + 2}{x^2 - 5x + 6} =$ (A) -5 (B) 5 (C) ∞ (D) $\frac{1}{3}$ (E) $-\frac{1}{3}$

9. The function $g(x) = \ln(x^2 - 1)$ is continuous for which values of x?

(A) -1 < x < 1 (B) $-1 \le x \le 1$ (C) $x \le -1$ or $x \ge 1$ (D) x < -1 or x > 1 (E) x > 1

Part II: Free Response: Show all work in the space provided. Be sure to use proper notation, notation, notation, No notation, No no points!!!

$$\frac{\left\{\frac{(2+x)^2 - 2(2+x) - 15}{x+5}, \quad x \le -3\right\}}{x+5}, \quad x \le -3$$

$$\frac{\tan^2 2x}{3x^2}, \quad -3 < x \le \frac{1}{2}$$

$$2x - a, \quad \frac{1}{2} < x < 1$$

$$3, \quad x = 1$$

$$bx^2 + a, \quad 1 < x < 2$$

$$\sqrt{x+2}, \quad 2 \le x \le 7$$

$$\frac{1}{2}x - \frac{1}{2}, \quad 7 < x \le 8$$

$$\frac{-5x^5 + 2x^2 + 7x + 14}{\sqrt{25x^{12} + 4x^4 + 13x^2 + 11}}, \quad x > 8$$

(a) Find $\lim_{x \to -5} f(x)$

(b) Find $\lim_{x\to\infty} f(x)$

(c) $\lim_{x \to 0} f(x) =$

(d) Find all values of a and b that make f continuous at $x = 1$. Show all steps, and use correct notation,	
notation, notation.	
() []	
(e) Does the IVT apply to $f(x)$ on $[7,8]$? Why or why not?	