Calculus Maximus

Date_____Period____

Worksheet 9.3—Power Series: Taylor and Maclaurin Series

Show all work. No calculator except unless specifically stated.

On problems 1-3, find a Taylor series for f(x) centered at the given value of a. Give the first four nonzero terms and the general term for each series.

1.
$$f(x) = e^{2x}$$
, $a = 3$

2.
$$f(x) = \frac{1}{x}$$
, $a = 1$

3.
$$f(x) = \ln x$$
, $a = 1$

On problems 4-5, find a Taylor series for f(x) centered at the given value of a. Give the first four nonzero terms.

4.
$$f(x) = \sin x$$
, $a = \frac{\pi}{6}$

5.
$$f(x) = \cos x$$
, $a = -\frac{\pi}{4}$

On problems 6-10, find a Maclaurin series for f(x). Give the first four nonzero terms and the general term for each series. Hint: Don't reinvent the wheel (or the series), rather, modify an existing power series.

$$6. \quad f(x) = e^{\frac{-x}{2}}$$

$$7. \quad f(x) = \sin\left(x^2\right)$$

7.
$$f(x) = \sin(x^2)$$
 8. $f(x) = \frac{\cos(3x)}{x}$ 9. $f(x) = x^2 e^{-x}$

9.
$$f(x) = x^2 e^{-x}$$

10. $f(x) = \sin^2 x$ (ADDITIONAL HINT: use the power-reducing identity)

11. (Calculator Permitted) Use your answer for problem 7 to approximate $\int_0^1 \sin(x^2) dx$ correct to three decimal places.

12. (a) Find the first four nonzero terms in the Taylor series expansion about (centered at) x = 0 for $f(x) = \sqrt{1+x}$.

(b) Use the results found in part (a) to find the first four nonzero terms in the Taylor series expansion about x = 0 for $g(x) = \sqrt{1 + x^3}$.

(c) Find the first four nonzero terms in the Taylor series expansion about x = 0 for the function h such that $h'(x) = \sqrt{1 + x^3}$ and h(0) = 4.

- 13. Let *f* be the function defined by $f(x) = \frac{1}{x-1}$.
 - (a) Write the first four terms and the general term of the Taylor series expansion of f(x) about x = 2.

(b) Use the result from part (a) to find the first four terms and the general term of the series expansion about x = 2 for $\ln |x-1|$