6. E 7. A 8. B 9. D 10. B C
 B
 B
 B
 D

AB Review 07, No Calculator Permitted, unless specified to the contrary.

- 1. (Calculator Permitted) Let f be the function given by $f(x) = 3e^{2x}$ and let g be the function given by $g(x) = 6x^3$. At what value of x do the graphs of f and g have parallel tangent lines?
- (A) -0.701 (B) -0.567 (C) -0.391
- (D) -0.302
- (E) -0.258

- 2. The radius of a circle is decreasing at a constant rate of 0.1 centimeters per second. In terms of the circumference C, what is the rate of change of the area of the circle, in square centimeters per second?
- (A) $-(0.2)\pi C$ (B) -(0.1)C (C) $-\frac{(0.1)C}{2\pi}$ (D) $(0.1)^2 C$ (E) $(0.1)^2 \pi C$

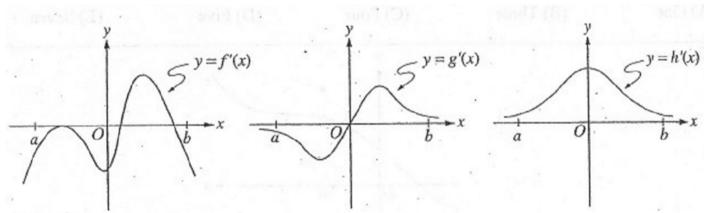
- 3. (Calculator Permitted) The first derivative of a function f is given by $f'(x) = \frac{\cos^2 x}{x} \frac{1}{5}$. How many critical values does f have on the open interval (0,10)?
 - (A) One
- (B) Three
- (C) Four
- (D) Five
- (E) Seven

- 4. $\lim_{x \to \infty} \frac{(2x-1)(3-x)}{(x-1)(x+3)}$ is

 - (A) -3 (B) -2 (C) 2 (D) 3
- (E) nonexistent

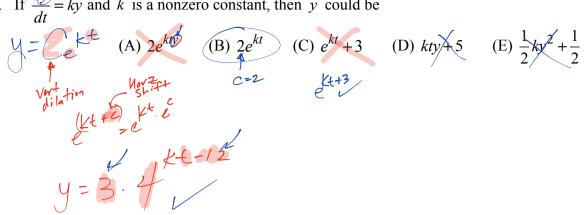
- 5. Let f be the function given by f(x) = |x|. Which of the following statements about f are true?
 - I. f is continuous at x = 0.
 - II. f is differentiable at x = 0.
 - III. f has an absolute minimum at x = 0.
 - (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) II and III only

- 6. If f is a continuous function and if F'(x) = f(x) for all real numbers x, then $\int_{1}^{3} f(2x) dx = \frac{1}{2} \left[f(2x) \right]^{3}$ (A) 2F(3) 2F(1) (B) $\frac{1}{2}F(3) \frac{1}{2}F(1)$ (C) 2F(6) 2F(2) (D) F(6) F(2) (E) $\frac{1}{2}F(6) \frac{1}{2}F(2)$



- The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?
 - (A) f only
- (B) g only (C) h only
- (D) f and g only (E) f, g, and h

8. If $\frac{dy}{dt} = ky$ and k is a nonzero constant, then y could be



9. If $f(x) = (x-1)(x^2+2)^3$, then f'(x) =

(A)
$$6x(x^2+2)^2$$

(B)
$$6x(x-1)(x^2+2)^2$$

(A)
$$6x(x^2+2)^2$$
 (B) $6x(x-1)(x^2+2)^2$ (C) $(x^2+2)^2(x^2+3x-1)$

(D)
$$(x^2+2)^2(7x^2-6x+2)$$
 (E) $-3(x-1)(x^2+2)^2$

(E)
$$-3(x-1)(x^2+2)^2$$

- 10. A particle moves along the x-axis with velocity given by $v(t) = 3t^2 + 6t$ for time $t \ge 0$. If the particle is at position x = 2 at time t = 0, what is the position of the particle at t = 1?
 - (A) 4
- (B) 6
- (C)9
- (D) 11
- (E) 12

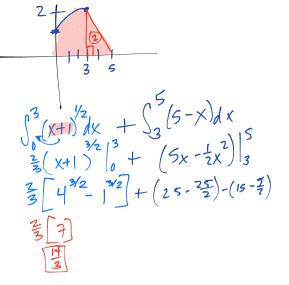
11. (2003, AB-6) Let
$$f$$
 be the function defined by

$$f(x) = \begin{cases} \sqrt{x+1} & \text{for } 0 \le x \le 3 \\ 5-x & \text{for } 3 \le x \le 5 \end{cases}$$

(a) Is
$$f$$
 continuous at $x = 3$? Explain why or why not.

$$\lim_{x \to 3^{-}} f(x) = 2^{-} f(3)$$

$$\lim_{x \to 3^{+}} f(x) = 2^{-}$$



(b) Find the average value of f(x) on the closed interval $0 \le x \le 5$.

$$AVD = \int_{0}^{S} f(x) dx$$

$$= \int_{0}^{S} f(x) dx$$

(c) Suppose the function g is defined by

$$g(x) = \begin{cases} k\sqrt{x+1} & \text{for } 0 \le x \le 3 \\ mx+2 & \text{for } 3 < x \le 5 \end{cases}$$

Where k and m are constants. If g is differentiable at x = 3, what are the values of k and m?

$$\frac{y-volores}{2} = 2k$$

$$\frac{y-volores}{2} = 2k$$

$$\frac{y-volores}{2} = 3m+2$$

$$\frac{y-volores}{2} = 3m+2$$

$$\frac{y-volores}{2} = 3m+2$$

$$\frac{y-volores}{2} = 2k$$

$$\frac{y-volores}{2$$

AP® CALCULUS AB 2003 SCORING GUIDELINES

Question 6

Let f be the function defined by

$$f(x) = \begin{cases} \sqrt{x+1} & \text{for } 0 \le x \le 3\\ 5 - x & \text{for } 3 < x \le 5. \end{cases}$$

- (a) Is f continuous at x = 3? Explain why or why not
- Find the average value of f(x) on the closed interval $0 \le x \le 5$.
- Suppose the function g is defined by

$$g(x) = \begin{cases} k\sqrt{x+1} & \text{for } 0 \le x \le 3\\ mx+2 & \text{for } 3 < x \le 5, \end{cases}$$

where k and m are constants. If g is differentiable at x = 3, what are the values of k and m?

- (a) f is continuous at x = 3 because $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = 2.$ Therefore, $\lim_{x \to 3} f(x) = 2 = f(3)$.
- $2: \left\{ \begin{array}{l} 1: \text{answers "yes" and equates the} \\ \text{values of the left- and right-hand} \\ \\ \text{limits} \\ \\ 1: \text{explanation involving limits} \end{array} \right.$
- (b) $\int_0^5 f(x) dx = \int_0^3 f(x) dx + \int_0^5 f(x) dx$ $= \frac{2}{3}(x+1)^{3/2}\Big|_{0}^{3} + \left(5x - \frac{1}{2}x^{2}\right)\Big|_{0}^{5}$ $=\left(\frac{16}{3}-\frac{2}{3}\right)+\left(\frac{25}{2}-\frac{21}{2}\right)=\frac{20}{3}$

 $1: k \int_0^3 f(x) dx + k \int_3^5 f(x) dx$ (where $k \neq 0$) $1: \text{antiderivative of } \sqrt{x+1}$ 1: antiderivative of 5-x 1: evaluation and answer

Average value: $\frac{1}{5} \int_0^5 f(x) dx = \frac{4}{3}$

- (c) Since g is continuous at x = 3, 2k = 3m + 2.

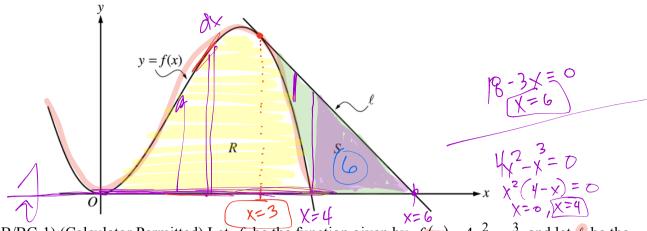
$$g'(x) = \begin{cases} \frac{k}{2\sqrt{x+1}} & \text{for } 0 < x < 3\\ m & \text{for } 3 < x < 5 \end{cases}$$

$$\lim_{x \to 3^{-}} g'(x) = \frac{k}{4} \text{ and } \lim_{x \to 3^{+}} g'(x) = m$$

Since these two limits exist and g is differentiable at x = 3, the two limits are equal. Thus $\frac{k}{4} = m$.

$$8m = 3m + 2$$
; $m = \frac{2}{5}$ and $k = \frac{8}{5}$

Since g is continuous at x = 3, 2k = 3m + 2. $g'(x) = \begin{cases} \frac{k}{2\sqrt{x+1}} & \text{for } 0 < x < 3\\ m & \text{for } 3 < x < 5 \end{cases} \qquad 3: \begin{cases} 1 : \frac{k}{4} = m\\ 1 : \text{values for } k \text{ and } m \end{cases}$



- 12. (2003B, AB/BC-1) (Calculator Permitted) Let f be the function given by $f(x) = 4x^2 x^3$, and let ℓ be the line $y \neq 18-3x$, where ℓ is tangent to the graph of f. Let R be the region bounded by the graph of f and the x-axis, and let S be the region bounded by the graph of f, the line ℓ , and the x-axis, as shown above.
 - (a) Show that ℓ is tangent to the graph of y = f(x) at the point x = 3.

Show that
$$\ell$$
 is tangent to the graph of $y = f(x)$ at the point $x = 3$.

$$\begin{array}{c}
y - v = 1 \\
\hline
S = 36 - 27 = 9 \\
f(x) = 18 - 9 = 9
\end{array}$$

$$\begin{array}{c}
S = 24 - 27 = -3 \\
\hline
\ell(x) = -3 \\
\hline
-3 = -3
\end{array}$$

$$\begin{array}{c}
f(x) = 3 \\
\hline
-3 = -3
\end{array}$$

(b) Find the area of S.

the area of S. $(18-3x)-(4x^2-x^3)dx + 6$

=79/6

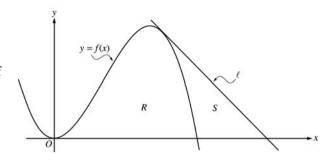
(c) Find the volume of the solid generated when R is revolved about the x-axis.

 $\sqrt{|x|^2 + |x|^2} = \sqrt{|x|^2 + |x|^2} = \sqrt{|x|^2} = \sqrt{|x|^2 + |x|^2} = \sqrt{|x|^2} = \sqrt{|x|^2 + |x|^2} = \sqrt{|x|^2}$

AP® CALCULUS AB 2003 SCORING GUIDELINES (Form B)

Question 1

Let f be the function given by $f(x) = 4x^2 - x^3$, and let ℓ be the line y = 18 - 3x, where ℓ is tangent to the graph of f. Let R be the region bounded by the graph of f and the x-axis, and let S be the region bounded by the graph of f, the line ℓ , and the x-axis, as shown above.



- (a) Show that ℓ is tangent to the graph of y = f(x) at the point x = 3.
- (b) Find the area of S.
- (c) Find the volume of the solid generated when R is revolved about the x-axis.

(a) $f'(x) = 8x - 3x^2$; f'(3) = 24 - 27 = -3 f(3) = 36 - 27 = 9Tangent line at x = 3 is y = -3(x - 3) + 9 = -3x + 18, which is the equation of line ℓ .

 $2: \begin{cases} 1: \text{finds } f'(3) \text{ and } f(3) \\ & \text{or} \\ & \text{shows } (3,9) \text{ is on both the} \\ & \text{graph of } f \text{ and line } \ell \end{cases}$

(b) f(x) = 0 at x = 4The line intersects the *x*-axis at x = 6. Area $= \frac{1}{2}(3)(9) - \int_{3}^{4} (4x^{2} - x^{3}) dx$ = 7.916 or 7.917OR

Area $= \int_{3}^{4} ((18 - 3x) - (4x^{2} - x^{3})) dx$ $+ \frac{1}{2}(2)(18 - 12)$ = 7.916 or 7.917

1: answer

(c) Volume = $\pi \int_0^4 (4x^2 - x^3)^2 dx$ = 156.038π or 490.208 $3: \left\{ egin{array}{l} 1: ext{limits and constant} \\ 1: ext{integrand} \\ 1: ext{answer} \end{array} \right.$