1993 and 2003 - Last , 2005
FR. polar Wonly I polar Mc. (Skip in Bind

BC-4

Consider the polar curve $r = 2 \sin(30)$ for $0 \le \theta \le \pi$.

1993

(a) In the xy-plane provided below, sketch the curve. Note: The xy-plane is provided in the pink test booklet only.

(b) Find the area of the region inside the curve.

(c) Find the slope of the curve at the point where $\theta = \frac{\pi}{4}$.

a)

b)
$$A = \frac{1}{2} \int_{0}^{\pi} 4 \sin^{2} 3\theta d\theta = \int_{0}^{\pi} (1 - \cos 6\theta) d\theta = \theta - \frac{1}{6} \sin 6\theta = \pi$$

or
$$\frac{3}{a} \int_{0}^{\pi/3} 4 \sin^{2} 3\theta d\theta = ... = \pi$$

$$\alpha = \frac{6}{8} \int_{0}^{\pi/6} 4 \sin^{2} 3\theta d\theta = ... = \pi$$

$$\theta \approx 0.8 \text{ m/s} = 0.3$$

At
$$\theta = \pi/4$$
, $dy/d\theta = -d$ and $dx/d\theta = -4$, so $dy/dx = -d/-4 = 1/2$

$$(x^2 + y^2)^2 = 6x^2y - 2y^3$$

2 { 1: 3 leaves 2 { 1: Maxr=2 and correct leaf placement

1: Constant and limits of integration

1: Integrand

1: Antidofferentiation arx evaluation

inust involve sin2(30)

1: Expresses curve in rectangular coordinates

d: Implicit differentiation involving (x2+y2), p = 0,

1: Answer using x=1 and 4=1 in student's derivative. Note: 1/4 if 0 not 142

AP Calculus BC-3

FINAL DRAFT FOR SCORING

2003

The figure above shows the graphs of the line $x = \frac{5}{3}y$ and the curve C given by $x = \sqrt{1+y^2}$. Let S be the shaded region bounded by the two graphs and the x-axis. The line and the curve intersect at point P.

- (a) Find the coordinates of point P and the value of $\frac{dx}{dy}$ for curve C at point P.
- (b) Set up and evaluate an integral expression with respect to y that gives the area of S.

- (c) Curve C is a part of the curve $x^2 y^2 = 1$. Show that $x^2 y^2 = 1$ can be written as the polar split equation $r^2 = \frac{1}{\cos^2 \theta \sin^2 \theta}$.
 - (d) Use the polar equation given in part (c) to set up an integral expression with respect to the polar angle θ that represents the area of S.
 - (a) At P, $\frac{5}{3}y = \sqrt{1+y^2}$, so $y = \frac{3}{4}$. Since $x = \frac{5}{3}y$, $x = \frac{5}{4}$.

$$\frac{dx}{dy} = \frac{y}{\sqrt{1+y^2}} = \frac{y}{x}$$
. At P , $\frac{dx}{dy} = \frac{\frac{3}{4}}{\frac{5}{4}} = \frac{3}{5}$.

- (b) Area = $\int_0^{3/4} \left(\sqrt{1+y^2} \frac{5}{3}y \right) dy$ = 0.346 or 0.347
- (c) $x = r\cos\theta$; $y = r\sin\theta$ $x^2 - y^2 = 1 \Rightarrow r^2\cos^2\theta - r^2\sin^2\theta = 1$ $r^2 = \frac{1}{\cos^2\theta - \sin^2\theta}$
- (d) Let β be the angle that segment OP makes with the x-axis. Then $\tan \beta = \frac{y}{x} = \frac{3/4}{5/4} = \frac{3}{5}$.

 Area = $\int_0^{\tan^{-1}(3/5)} \frac{1}{2} r^2 d\theta$

 $= \frac{1}{2} \int_0^{\tan^{-1}(\frac{3}{5})} \frac{1}{\cos^2 \theta - \sin^2 \theta} d\theta$

$$2: \left\{ \begin{array}{l} 1: \text{coordinates of } P \\ 1: \frac{dx}{dy} \text{ at } P \end{array} \right.$$

- $3: \left\{ egin{array}{l} 1: ext{limits} \ 1: ext{integrand} \ 1: ext{answer} \end{array}
 ight.$
- $2: \begin{cases} 1: \text{substitutes } x = r\cos\theta \text{ and} \\ y = r\sin\theta \text{ into } x^2 y^2 = 1 \\ 1: \text{isolates } r^2 \end{cases}$
- 2: { 1: limits
 1: integrand and constant
 (but need something for
 NOTE: limits. can't leave blank)

 ** they view it as indef express
 tather than def. # Area.
 not just "a" to "b" either. must
 be numbers in domain.

AP® CALCULUS BC 2003 SCORING GUIDELINES (Form B)

Question 2

The figure above shows the graphs of the circles $x^2 + y^2 = 2$ and $(x-1)^2 + y^2 = 1$. The graphs intersect at the points (l,1) and (l,-1). Let R be the shaded region in the first quadrant bounded by the two circles and the x-axis.

- (a) Set up an expression involving one or more integrals with respect to x that represents the area of R.
- (b) Set up an expression involving one or more integrals with respect to y that represents the area of R.
 - The polar equations of the circles are $r = \sqrt{2}$ and $r = 2\cos\theta$, respectively. Set up an expression involving one or more integrals with respect to the polar angle θ that represents the area of R.

$$\rho(a) \text{ Area} = \int_0^1 \sqrt{1 - (x - 1)^2} \, dx + \int_1^{\sqrt{2}} \sqrt{2 - x^2} \, dx$$

OR

$${\rm Area} = \frac{1}{4} \left(\pi \cdot \mathbf{1}^2 \right) + \int_1^{\sqrt{2}} \sqrt{2 - x^2} \, dx$$

(b) Area =
$$\int_0^1 (\sqrt{2-y^2} - (1-\sqrt{1-y^2})) dy$$

(c) Area =
$$\int_0^{\frac{\pi}{4}} \frac{1}{2} (\sqrt{2})^2 d\theta + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} (2\cos\theta)^2 d\theta$$

OR

Area =
$$\frac{1}{8}\pi(\sqrt{2})^2 + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2}(2\cos\theta)^2 d\theta$$

1: integrand for larger circle

 integrand or geometric area for smaller circle

1: limits on integral(s)

Note: <-1> if no addition of terms

1: limits

2: integrand

<-1> reversal

<-1> algebra error in solving for x

<-1> add rather

than subtract < -2 > other errors

1 : integrand or geometric area for larger circle

1 : integrand for smaller circle

1: limits on integral(s)

Note: <-1> if no addition of terms

Final Draft for Scoring

The curve above is drawn in the xy-plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \le \theta \le \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta)$.

- (a) Find the area bounded by the curve and the x-axis.
- (b) Find the angle θ that corresponds to the point on the curve with x-coordinate -2.
- (c) For $\frac{\pi}{3} < \theta < \frac{2\pi}{3}$, $\frac{dr}{d\theta}$ is negative. What does this fact say about r? What does this fact say about the curve?
- (d) Find the value of θ in the interval $0 \le \theta \le \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.

(a) Area =
$$\frac{1}{2} \int_0^{\pi} r^2 d\theta$$

= $\frac{1}{2} \int_0^{\pi} (\theta + \sin(2\theta))^2 d\theta = 4.382$

$$3: \begin{cases} 1: \text{limits and constant} \\ 1: \text{integrand} \\ 1: \text{answer} \end{cases}$$

(b)
$$-2 = r\cos(\theta) = (\theta + \sin(2\theta))\cos(\theta)$$

 $\theta = 2.786$

$$2: \begin{cases} 1: \text{ equation} \\ 1: \text{ answer} \end{cases}$$

- (c) Since $\frac{dr}{d\theta} < 0$ for $\frac{\pi}{3} < \theta < \frac{2\pi}{3}$, r is decreasing on this interval. This means the curve is getting closer to the origin.
- 2: $\begin{cases} 1 : \text{information about } r \\ 1 : \text{information about the curve} \end{cases}$

(d) The only value in
$$\left[0, \frac{\pi}{2}\right]$$
 where $\frac{dr}{d\theta} = 0$ is $\theta = \frac{\pi}{3}$.

θ	·r
0	0
$\frac{\pi}{3}$	1.913
$\frac{\pi}{2}$	1.571

2:
$$\begin{cases} 1: \theta = \frac{\pi}{3} \text{ or } 1.047\\ 1: \text{ answer with justification} \end{cases}$$

The greatest distance occurs when $\theta = \frac{\pi}{3}$.

AP® CALCULUS BC 2007 SCORING GUIDELINES

Question 3

The graphs of the polar curves r = 2 and $r = 3 + 2\cos\theta$ are shown in the figure above. The curves intersect when $\theta = \frac{2\pi}{3}$ and $\theta = \frac{4\pi}{3}$.

Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.

(c) For the particle described in part (b), $\frac{dy}{dt} = \frac{dy}{d\theta}$. Find the value of $\frac{dy}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.

(a) Area =
$$\frac{2}{3}\pi(2)^2 + \frac{1}{2} \int_{2\pi/3}^{4\pi/3} (3 + 2\cos\theta)^2 d\theta$$

= 10.370

(b)
$$\frac{dr}{dt}\Big|_{\theta=\pi/3} = \frac{dr}{d\theta}\Big|_{\theta=\pi/3} = -1.732$$

$$2: \begin{cases} 1: \frac{dr}{dt} \Big|_{\theta=\pi/3} \\ 1: interpretation \end{cases}$$

The particle is moving closer to the origin, since $\frac{dr}{dt} < 0$ and r > 0 when $\theta = \frac{\pi}{2}$.

(c)
$$y = r \sin \theta = (3 + 2 \cos \theta) \sin \theta$$

 $\frac{dy}{dt}\Big|_{\theta = \pi/3} = \frac{dy}{d\theta}\Big|_{\theta = \pi/3} = 0.5$

3:
$$\begin{cases} 1 : \text{ expression for } y \text{ in terms of } \theta \\ 1 : \frac{dy}{dt} \Big|_{\theta = \pi/3} \\ 1 : \text{ interpretation} \end{cases}$$

The particle is moving away from the x-axis, since
$$\frac{dy}{dt} > 0$$
 and $y > 0$ when $\theta = \frac{\pi}{3}$.