CALCULUS BC LAST AP REVIEW

1. The population P(t) of fish in a lake satisfies the logistic differential equation

$$\frac{dP}{dt} = 3P - \frac{P^2}{6000}.$$

- (a) If P(0) = 4000, what is $\lim_{t \to \infty} P(t)$? Is the solution curve increasing or decreasing? Justify your answer.
- (b) If P(0)=10,000, what is $\lim_{t\to\infty} P(t)$? Is the solution curve increasing or decreasing? Justify your answer.
- (c) If P(0) = 20,000, what is $\lim_{t \to \infty} P(t)$? Is the solution curve increasing or decreasing? Justify your answer.
- (d) If P(0) = 4000, what is the population when it is growing the fastest? Where is the solution curve concave up? Concave down? Justify your answer.
- $2. \int x \sin(2x) dx =$

3.
$$\int \frac{dx}{x^2 - 6x + 8} =$$

- 4. Write an integral expression which gives the area of the region inside the polar curve $r = 4\cos\theta$ and outside r = 2.
- 5. Given $\frac{dy}{dx} = \frac{xy}{2}$. Let f(x) be the particular solution to the given differential equation with initial condition f(0)=3. Use Euler's method starting at x=0, with a step size of 0.1, to approximate f(0.2).

- 6. Given $\frac{dx}{dt} = \cos(t^3)$ and $\frac{dy}{dt} = 3\sin(t^2)$ for $0 \le t \le 3$. At time t = 2, the object is at position (4, 5).
 - (a) Find the speed of the object at time t = 2.
 - (b) Find the total distance traveled by the object over the time interval $0 \le t \le 1$.
 - (c) Find the position of the object at time t=3.

7. Given
$$f(x) = \frac{1}{3} + \frac{2x}{9} + \frac{3x^2}{27} + \dots + \frac{(n+1)}{3^{n+1}}x^n + \dots$$
(a) Find $\lim_{x \to 0} \frac{f(x) - \frac{1}{3}}{x}$.

- (b) Write the first three nonzero terms and the general term for the infinite series that represents $\int_0^1 f(x) dx$.
- (c) Find the sum of the series found in part (b).

8. If
$$y = xy + x^2 + 1$$
, then when $x = -1$, $\frac{dy}{dx} = ?$

9. If θ increases at a constant rate of 3 rad/min, at what rate is x increasing in units/min when x = 3 units?

10. Write an integral equation which gives the length of the path described by the parametric equations $x = \cos^3 t$ and $y = \sin^3 t$ for $0 \le t \le \frac{\pi}{2}$.

- 11. If f is a function such that $f'(x) = \sin(x^2)$, then the coefficient of x^7 in the Taylor series for f(x) about x = 0 is ?
- 12. If $\frac{dy}{dx} = y \sec^2 x$ and y = 5 when x = 0, then y = ?

13.
$$\lim_{h \to 0} \frac{\cos\left(\frac{\pi}{2} + h\right) - \cos\left(\frac{\pi}{2}\right)}{h} =$$

14. The coefficient of x^3 in the Taylor series for e^{2x} about x = 0 is ?

15. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$ converge?

16. Which of the following converge?

I.
$$\sum_{n=1}^{\infty} \frac{n}{n+2}$$

II.
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$$

III.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- (A) None
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only
- 17. The function f has derivatives of all orders for all real numbers x. Assume that f(2) = 5, f'(2) = -3, f''(2) = 4, f'''(2) = -1, and $|f^{(4)}(x)| \le 3$ for all x in [2, 2.2].
 - (a) Write the third-degree Taylor polynomial for f about x = 2.
 - (b) Use your answer to (a) to approximate f(2.15). Give your answer correct to five decimal places.
 - (c) Use the Lagrange error bound on the approximation of f(2.15) to explain why $f(2.15) \neq 4.7$.
- 18. The Taylor series about x = 5 for a certain function f converges to f(x) for all x in its interval of convergence. The nth derivative of f at x = 5 is given by

$$f^{(n)}(5) = \frac{(-1)^n n!}{2^n (n+2)}$$
 and $f(5) = \frac{1}{2}$.

Show that the sixth-degree Taylor polynomial for f about x = 5 approximates f(6) with an error less than $\frac{1}{1000}$.