AP REVIEW 7

Work the following on notebook paper. Use your calculator on problems 67, 69, and 71.

66. Let f be the function defined by

$$f(x) = \begin{cases} \sqrt{x+1} & \text{for } 0 \le x \le 3\\ 5-x & \text{for } 3 < x \le 5. \end{cases}$$

- (a) Is f continuous at x = 3? Explain why or why not.
- (b) Find the average value of f(x) on the closed interval $0 \le x \le 5$.
- (c) Suppose the function g is defined by

$$g(x) = \begin{cases} k\sqrt{x+1} & \text{for } 0 \le x \le 3\\ mx+2 & \text{for } 3 < x \le 5, \end{cases}$$

where k and m are constants. If g is differentiable at x = 3, what are the values of k and m?

67. Let f be the function given by $f(x) = 3e^{2x}$ and let g be the function given by $g(x) = 6x^3$.

At what value of x do the graphs of f and g have parallel tangent lines?

- (A) -0.701
- (B) -0.567
- (C) -0.391
- (D) -0.302
- (E) -0.258
- 68. The radius of a circle is decreasing at a constant rate of 0.1 centimeters per second. In terms of the circumference C, what is the rate of change of the area of the circle, in square centimeters per second?

- (A) $-(0.2)\pi C$ (B) -(0.1)C (C) $-\frac{(0.1)C}{2\pi}$ (D) $(0.1)^2 C$ (E) $(0.1)^2 \pi C$
- 69. The first derivative of a function f is given by $f'(x) = \frac{\cos^2 x}{x} \frac{1}{5}$. How many critical values

does f have on the open interval (0, 10)?

- (A) One
- (B) Three
- (C) Four
- (D) Five
- (E) Seven

70.

The graph of a function f is shown above. Which of the following statements about f is false?

- (A) f is continuous at x = a.
- (B) f has a relative maximum at x = a.
- (C) x = a is in the domain of f.
- (D) $\lim_{x\to a^+} f(x)$ is equal to $\lim_{x\to a^-} f(x)$.
- (E) $\lim f(x)$ exists. $x \rightarrow a$

Let f be the function given by $f(x) = 4x^2 - x^3$, and let ℓ be the line y = 18 - 3x, where ℓ is tangent to the graph of f. Let R be the region bounded by the graph of f and the x-axis, and let S be the region bounded by the graph of f, the line ℓ , and the x-axis, as shown above.

- (a) Show that \(\ell \) is tangent to the graph of \(y = f(x) \) at the point x=3.
- (b) Find the area of S.
- (c) Find the volume of the solid generated when R is revolved about the x-axis.
- 72. Let f be the function given by f(x) = |x|. Which of the following statements about f are true?
 - I. f is continuous at x = 0.
 - II. f is differentiable at x = 0.
 - III. f has an absolute minimum at x = 0.
- (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) II and III only
- 73. If f is a continuous function and if F'(x) = f(x) for all real numbers x,

then $\int_{1}^{3} f(2x) dx =$

- (A) 2F(3)-2F(1) (B) $\frac{1}{2}F(3)-\frac{1}{2}F(1)$ (C) 2F(6)-2F(2)

- (D) F(6)-F(2)
- (E) $\frac{1}{2}F(6) \frac{1}{2}F(2)$

74.

The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?

- (A) f only
- (B) g only
- (C) h only
- (D) f and g only
- (E) f, g, and h

- 75. If $\frac{dy}{dt} = ky$ and k is a nonzero constant, then y could be
- (A) $2e^{kty}$
- (B) $2e^{kt}$ (C) $e^{kt} + 3$ (D) kty + 5
- (E) $\frac{1}{2}ky^2 + \frac{1}{2}$