AP REVIEW 6

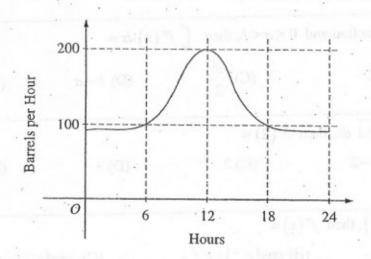
Work these on notebook paper. Use your calculator on problems 56 and 60.

56. A particle moves along the x-axis so that its velocity at time t is given by

$$v(t) = -(t+1)\sin\left(\frac{t^2}{2}\right).$$

At time t = 0, the particle is at position x = 1.

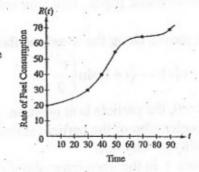
- (a) Find the acceleration of the particle at time t=2. Is the speed of the particle increasing at t = 2? Why or why not?
- (b) Find all times t in the open interval 0 < t < 3 when the particle changes direction. Justify your answer.
- (c) Find the total distance traveled by the particle from time t=0 until time t=3.
- (d) During the time interval $0 \le t \le 3$, what is the greatest distance between the particle and the origin? Show the work that leads to your answer.
- 57. Let f and g be differentiable functions with the following properties:


(i)
$$g(x) > 0$$
 for all x

(ii)
$$f(0)=1$$

If
$$h(x) = f(x)g(x)$$
 and $h'(x) = f(x)g'(x)$, then $f(x) =$

- (A) f'(x)
- (B) g(x)
- (C) e^x (D) 0


The flow of oil, in barrels per hour, through a pipeline on July 9 is given by the graph shown above. Of the following, which best approximates the total number of barrels of oil that passed through the pipeline that day?

- (A) 500
- (B)·600
- (C) 2,400
- (D) 3,000
- (E) 4,800
- 59. What is the instantaneous rate of change at x = 2 of the function f given

by
$$f(x) = \frac{x^2 - 2}{x - 1}$$
?

- (A) -2 (B) $\frac{1}{6}$
- (C) $\frac{1}{2}$
- (E) 6

The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a twicedifferentiable and strictly increasing function R of time t. The graph of R and a table of selected values of R(t), for the time interval $0 \le t \le 90$ minutes, are shown above.

nu	R(t) (gallont per mir	(minutes)
and the	20	0
	30	30
	40	-40
	55	50
	65	70
	70	90

- (a) Use data from the table to find an approximation for R'(45). Show the computations that lead to your answer. Indicate units of measure.
- The rate of fuel consumption is increasing fastest at time t = 45 minutes. What is the value of R''(45)? Explain your reasoning.
- (c) Approximate the value of $\int_0^{90} R(t) dt$ using a left Riemann sum with the five subintervals indicated by the data in the table. Is this numerical approximation less than the value of $\int_0^{90} R(t) dt$? Explain your reasoning.
- For $0 < b \le 90$ minutes, explain the meaning of $\int_0^b R(t) dt$ in terms of fuel consumption for the plane. Explain the meaning of $\frac{1}{b} \int_0^b R(t) dt$ in terms of fuel consumption for the plane. Indicate units of measure in both answers.
- 61. If f is a linear function and 0 < a < b, then $\int_a^b f''(x) dx =$
- (A)0
- (B) 1

- (C) $\frac{ab}{2}$
- (D) b-a
- (E) $\frac{b^2 a^2}{2}$

- 62. If $F(x) = \int_0^x \sqrt{t^3 + 1} dt$, then F'(2) =
- (A) -3
- (B) -2
- (D) 3
- (E) 18

- 63. If $f(x) = \sin(e^{-x})$, then f'(x) =
- (A) $-\cos(e^{-x})$
- (B) $\cos(e^{-x}) + e^{-x}$
- (C) $\cos(e^{-x}) e^{-x}$
- (D) $e^{-x}\cos(e^{-x})$ (E) $-e^{-x}\cos(e^{-x})$
- 64. If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x =
- (A) -1 only

(B) 2 only

(C) -1 and 0 only

- (D) -1 and 2 only
- (E) -1, 0, and 2 only
- 65. What are all the values of k for which $\int_{-3}^{k} x^2 dx = 0$?
- (A) -3
- (B) 0
- (C) 3
- (D) -3 and 3
- (E) -3, 0, and 3