AP REVIEW 2

Work the following on notebook paper, showing all work. Use your calculator only on problem 14. 14. Let R be the region in the first quadrant enclosed by the graphs of

$$y = e^{-x^2}$$
, $y = 1 - \cos x$, and the y-axis.

- (a) Find the volume of the solid generated when the region R is revolved about the line y = 2.
- (b) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.
- (c) Write an expression involving integrals that could be used to find the perimeter of the region R. Do not evaluate.

15. If
$$y = xy + x^2 + 1$$
, then when $x = -1$, $\frac{dy}{dx}$ is

- (A) $\frac{1}{2}$ (B) $-\frac{1}{2}$ (C) -1 (D) -2
- (E) nonexistent

16.
$$\int_{1}^{\infty} \frac{x}{(1+x^2)^2}$$
 is

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$

- (E) divergent

17. Let f be the function defined by
$$f(x) = \begin{cases} x^3 & \text{for } x \le 0 \\ x & \text{for } x > 0 \end{cases}$$
. Which of the following statements

about f is true?

- (A) f is an odd function.
- (B) f is discontinuous at x = 0. (C) f has a relative maximum.

- (D) f'(0) = 0
- (E) f'(x) > 0 for $x \neq 0$.

18.

The graph of f', the derivative of f, is shown in the figure above. Which of the following describes all relative extrema of f on the open interval (a, b)?

- (A) One relative maximum and two relative minima
- (B) Two relative maxima and one relative minimum
- (C) Three relative maxima and one relative minimum
- (D) One relative maximum and three relative minima
- (E) Three relative maxima and two relative minima

A car is traveling on a straight road with velocity 55 ft/sec at time = 0. For $0 \le t \le 18$ seconds, the car's acceleration a(t), in ft/sec^2 , is the piecewise linear function defined by the graph above.

- (a) Is the velocity of the car increasing at t = 2 seconds? Why or why not?
- (b) At what time in the interval $0 \le t \le 18$, other than t = 0, is the velocity of the car 55 ft/sec? Why?
- (c) On the time interval $0 \le t \le 18$, what is the car's absolute maximum velocity, in ft/sec, and at what time does it occur? Justify your answer.
- (d) At what times in the interval $0 \le t \le 18$, if any, is the car's velocity equal to zero? Justify your answer.

20. An antiderivative for $\frac{1}{r^2-2r+2}$ is

- (A) $-(x^2-2x+2)^{-2}$ (B) $\ln(x^2-2x+2)$ (C) $\ln\left|\frac{x-2}{x+1}\right|$

- (D) Arcsec (x-1) (E) Arctan (x-1)

21. The region enclosed by the x-axis, the line x = 3, and the curve $y = \sqrt{x}$ is rotated about the x-axis. What is the volume of the solid generated?

- (A) 3π (B) $3\sqrt{3}\pi$ (C) $\frac{9}{2}\pi$ (D) 9π (E) $\frac{36\sqrt{3}}{5}\pi$

22. $\int_0^{\sqrt{3}} \frac{dx}{\sqrt{4-x^2}} =$

- (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{1}{2} \ln 2$

23. If $\frac{dy}{dx} = 2y^2$ and if y = -1 when x = 1, then when x = 2, y = -1

- (A) $-\frac{2}{3}$ (B) $-\frac{1}{3}$ (C) 0 (D) $\frac{1}{2}$ (E) $\frac{2}{3}$

24. The top of a 25-foot ladder is sliding down a vertical wall at a constant rate of 3 feet per minute. When the top of the ladder is 7 feet from the ground, what is the rate of change of the distance between the bottom of the ladder and the wall?

- (A) $-\frac{7}{8}$ feet per minute (B) $-\frac{7}{24}$ feet per minute (C) $\frac{7}{24}$ feet per minute

- (D) $\frac{7}{8}$ feet per minute (E) $\frac{21}{25}$ feet per minute