CALCULUS BC POWER SERIES WORKSHEET

Work the following on notebook paper.

- 1. (a) Find the fourth-degree Taylor polynomial for $\cos x$ about x = 0. Then use your polynomial to approximate the value of $\cos 0.8$, and use Taylor's Theorem to determine the accuracy of the approximation. Give three decimal places.
 - (b) Find an interval [a, b] such that $a \le \cos(0.8) \le b$
 - (c) Could cos 0.8 equal 0.695? Show why or why not.
- 2. (a) Write the fourth-degree Maclaurin polynomial for $f(x) = e^x$. Then use your polynomial to approximate e^{-1} , and find a Lagrange error bound for the maximum error when $|x| \le 1$. Give three decimal places.
 - (b) Find an interval [a, b] such that $a \le e^{-1} \le b$.
- 3. Let f be a function that has derivatives of all orders for all real numbers x Assume that f(5) = 6, f'(5) = 8, f''(5) = 30, f'''(5) = 48, and $|f^{(4)}(x)| \le 75$

for all x in the interval [5, 5.2].

- (a) Find the third-degree Taylor polynomial about x = 5 for f(x).
- (b) Use your answer to part (a) to estimate the value of f(5.2). What is the maximum possible error in making this estimate? Give three decimal places.
- (c) Find an interval [a, b] such that $a \le f(5.2) \le b$. Give three decimal places.
- (d) Could f(5.2) equal 8.254? Show why or why not.
- (d) Let $g(x) = x \cdot f(x^2)$. Find the Maclaurin series for g(x). (Write as many nonzero terms as possible.)
- (e) Let h(x) be a function that has the properties h(0) = 5 and h'(x) = f(x). Find the Maclaurin series for h(x). (Write as many terms as possible.)
- 4. Find the first four nonzero terms of the power series for $f(x) = \sin x$ centered at $x = \frac{3\pi}{4}$.

Find the first four nonzero terms and the general term for the Maclaurin series for:

$$5. f(x) = x \cos(x^3)$$

6.
$$g(x) = \frac{1}{1+x^2}$$

Find the radius and interval of convergence for:

7.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n \left(x-2\right)^n}{3^n n^2}$$

8.
$$\sum_{n=0}^{\infty} (2n)!(x-5)^n$$

- 9. Use the Maclaurin series for $\cos x$ to find $\lim_{x\to 0} \frac{1-\cos x}{x}$.
- 10. The Taylor series about x = 3 for a certain function f converges to f(x) for all x in the interval of convergence. The nth derivative of f at x = 3 is given by

$$f^{(n)}(3) = \frac{(-1)^n n!}{5^n (n+3)}$$
 and $f(3) = \frac{1}{3}$.

- (a) Write the fourth-degree Taylor polynomial for f about x = 3.
- (b) Find the radius of convergence of the Taylor series for f about x = 3.
- (c) Show that the third-degree Taylor polynomial approximates f(4) with an error less than $\frac{1}{4000}$

Multiple Choice.

11. What are all the values of x for which the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges?

$$(A) -1 \le x \le 1$$
 $(B) -1 < x < 1$ $(C) -1 < x \le 1$ $(D) -1 \le x < 1$ (E) All real x

- 12. The coefficient of x^6 in the Taylor series expansion about x = 0 for $f(x) = \sin(x^2)$ is
- $(A) -\frac{1}{6}$ (B) 0 $(C) \frac{1}{120}$ $(D) \frac{1}{6}$ (E) 1
- 13. If f is a function such that $f'(x) = \sin(x^2)$, then the coefficient of x^7 in the Taylor series for f(x) about x = 0 is
- $(A)\frac{1}{7!}$ $(B)\frac{1}{7}$ (C) $(D)-\frac{1}{42}$ $(E)-\frac{1}{7!}$