
SERIES DAY 3

Geometric Series, nth Term Test for Divergence, and Telescoping Series

Ex.  Determine whether the following series converge or diverge.
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Note:  This does NOT say that if lim 0nn
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 , then the series DOES converge.  This test can only be used to 

prove that a series diverges (hence the name.)  If lim 0nn
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 , then this test doesn’t tell us anything, is 

inconclusive, doesn’t work, fails, etc. . . .  We MUST use another test.  This test is a GREAT time-saver.  Always 
perform it FIRST, not second, but FIRST!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Ex.  Determine whether the following series converge or diverge.
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Geometric Series Test

A geometric series is in the form 1
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The geometric series diverges if 1r  .

If 1r  , the series converges to the sum 1
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NOTE: this formula works only when the first term is 1a , otherwise you 
can adapt it by subtracting out “missing” terms!!

nth Term Test for Divergence

If lim 0nn
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(think about it, it should make perfect sense!)



A series such as 1 1 1 1 11
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  is called a telescoping series because it collapses to one term or 

a few terms.  If a series collapses to a finite sum, then it converges by the Telescoping Series Test.

Ex.  Determine whether the following series converges or diverges.
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Integral Test and p-Series

Ex. Determine whether the following series converge or diverge.
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Ex.  Approximate the sum of the convergent series 4
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maximum error for your approximation.

Integral Test
If f is Decreasing, Continuous, and Positive (Dogs Cuss in Prison!) for 1x   AND

( )na f x , then 
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Note:  This does NOT mean that the series converges the value of the definite 
integral!!!!!!

If the series converges to S, then the remainder, N NR S S   is bounded by 
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What values of p would cause 
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Let 1p  :
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Let 0.9p  :
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p-series

A series of the form 
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constant.

For 1p  , the series 
1

1 1 1 11
2 3n n n





         is called the harmonic series.

p-Series Test
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