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You should be able to perform problems or explain theories that cover the following subjects: 
A.  Interpretations and properties of definite integrals. 

• Computation of Riemann sums using left, right, and midpoint evaluation points. 
• Definite integral as a limit of Riemann sums over equal subdivisions. 
• Definite integral interpreted as the change of the quantity over an interval: 
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• Basic properties of definite integrals. 
B.  Fundamental Theorem of Calculus 

• Use of the Fundamental Theorem to evaluate definite integrals 
• Use of Fundamental Theorem to represent a particular antiderivative, and the analytical and 

graphical analysis of functions so defined. 
C.  Techniques of antidifferentiation 

• Antiderivatives following directly from derivatives of basic functions. 
• Antiderivatives by substitution of variables (including change of limits for definite integrals) 

D.  Applications of antidifferentiation 
• Finding specific antiderivatives using initial conditions, including applications to motion 

along a line. 
• Solving separable differential equations and using them in modeling.  In particular, studying 

the equation and exponential growth. kyy =′
 
Practice Problems 
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3. 
 

      
 
            y-axis:  Velocity (feet per second),  [0,90], y-scl: 10 
            x-axis:  Time (seconds), [0,50], x-scl: 5 
  

The graph of the velocity , in ft/sec, of a car traveling on a 
straight road, for , is shown above.  A table of values for 

, at 5 second intervals of time , is shown to the right of the graph. 
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10 
15 
20 
25 
30 
35 
40 
45 
50 
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12 
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55 
70 
78 
81 
75 
60 
72 

 
a) During what intervals of time is the acceleration of the car positive?  Give a reason for you 

answer? 



b) Find the average acceleration of the car, in   , over the interval . 2sec/ft 500 ≤≤ t

c) Find one approximation for the acceleration of the car, in , at t .  Show the                                 
computations you used to arrive at your answer. 
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d) Approximate ∫ with Riemann sum, using the midpoints of five subintervals of equal 

length.  Using correct units, explain the meaning of the integral. 
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4. If ∫ , where is a continuous function, what would we need to do with the limits 

of integration to maintain an equivalent area under the transformation ?  How would the 
area be affected under the transformation ? 
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5. Find the values of for which . k 0)5(
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7. Use the limit definition of the Definite Integral (Riemann Sums) to evaluate the area of the region 

bounded by , the x-axis, and the vertical lines and . 2)( 2 += xxf 1=x 2=x
 

8. Verify your answer from number 7 using the Fundamental Theorem of Calculus. 
 

9. If (f for , then find .  Leave your answers in terms of 

. 
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10. Let f be defined by the graph below, where is continuous and differentiable on ; 

; 0 .  Let . 
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 a)  =F  )(a
 b)  =(f  )b

c)  Is positive, negative, or zero? )(bF
d) Is F positive, negative, or zero? )(c
e) Is F increasing or decreasing at ? )(x cx =
f) Is F positive, negative, or zero? )(a′

g) Is F concave up or concave down at ? )(x cx =
h) Is F concave up or concave down at ? )(x ds =
i) At what value of is  a maximum?  A minimum? x )(xF
j) Is F positive, negative, or zero? )0(
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12.  Assume both and are continuous, , and  f g ba < ∫ ∫>
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b) Must (f for all in the interval [ ? )() xgx > x ],ba
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13.Assume is continuous,  and  f ba < ∫ =
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a) Does it necessarily follow that  for all  in [ ? 0)( =xf x ],ba
b) Does it necessarily follow that for at least some in [ ? 0)( =xf x ],ba
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