
4.6 Numerical Integration: The Trapezoidal Rule 
 
TOOTLIFTST 

• Numerical approximations to definite integrals 
• Use of trapezoidal sums to approximate definite integrals of functions represented 

algebraically, geometrically, and by tables of values. 
 
 
Numeric Integration is useful for finding area approximations.  Why would we want an 
approximation, though, rather than the actual area (the limit of Riemann sums and 
Definite Integrals can do this for us if we have the equation)?  Sometimes, all we need is 
an approximation.  Sometimes we have data that cannot be represented by a particular 
function.  Sometimes we just have a graph, and we can quickly use geometric shapes to 
find areas quickly.  Even if we did have the equation of the desired function, sometimes it 
can either be too difficult to integrate by hand, or not integrable at all!  This is when 
numeric integration is useful (without a calculator of course.) 
 
So far we have learned a couple of ways to approximate areas numerically.  Here’s a 
summary: 
 

1. By partitions that can be calculated using Geometric formulas.  Ex) Circles, 
Triangles, Rectangles, Squares, and Trapezoids. 

2. By Riemann Sums with n equal subintervals using either Left-endpoints, Right-
endpoints, or Midpoints. 

 
We will now learn another method that, for a discreet number of subintervals, yield a 
better approximation of area than Riemann sums.  It uses the TRAPEZOID. 
 
Let’s review the definition of a trapezoid from your Geometry class. 
 

A trapezoid is a quadrilateral (has 4 sides) and has only one pair of 
sides parallel.  

How to determine the area of a trapezoid:  

• Add the lengths of the 2 parallel sides  

• divide by 2 to get the average length of the parallel sides.  

• Multiply this by the height (distance between the parallel sides) 



Notice this trapezoid is tilted 
up on its side.  The “bases” 
are the two parallel sides, a 
and c.  The “height” is b.  The 
area of the trapezoid becomes 
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When we use trapezoids on 
intervals under a function 
curve, we get a better 
approximation than if we used 
rectangles, however, we need 
to use the function values at 
both the left and right 
endpoint, rather than just one 
of them.  The interval width 
becomes the “height” in the 
formula. 

 

The following diagram will illustrate how the interval from a to b is subdivided 
into subintervals of equal length using trapezoids.  The width of each subinterval, 

, is then found by the following formula: x∆
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To find the area approximation, we find the area of each trapezoid and add them up.  The 
stopping points of the intervals will be similar to those from Riemann Sums: 
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The formula then becomes: 
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For the above graph, specifically, we can expand the sum to look like 
 

[ ] [ ] [ ] [ ] [ ] xcfcfxcfcfxcfcfxcfcfxcfcfA ∆++∆++∆++∆++∆+= )()(
2
1)()(

2
1)()2(

2
1)()(

2
1)()(

2
1

544332110

 

Notice that each term has two common factors, 
2
1  and , AND all the function values 

except the endpoints appear TWICE.  This is because they each act as the right endpoint 
of the left trapezoid and the left endpoint of the next one.  Recognizing this, we can 

simplify the above formula to the following: 

x∆

 
 

[ ])()(2)(2)(2)(2)(
2
1

543210 cfcfcfcfcfcfxA +++++∆=  

 
If we remember the ½ out in front every time and to double the middle function values, 
the formula is very similar to the Riemann sum approximations. 
 
How can we increase the accuracy of our approximations?  That’s right!  We take more 
and more trapezoidal subintervals with smaller and smaller “heights,” our .  To see 
this happen very quickly, click 

x∆
here. 

 
Let’s look at an example: 
Example 1: Given the equation of a function . )(xfy =
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First, we find the subinterval width: 

2
1

4
02

=
−

=∆x  

Now we plug into the formula: 
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http://www.mapleapps.com/categories/animations/gallery/html/IntTra_pop-up.htm


 
This Area is a little bit MORE than the actual 
area since the graph is concave up. The actual 

area is 333.3
3

=
10  as shown at the right.   

 
We can calculate the error now by our method 
of Trapezodial areas. 
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This is close enough for my wife, so it should be 
close enough for anybody. 
 
Notice I used the fractions, rather than the 
decimal approximations.  Why? 

 

 
 
What if we aren’t given a function, but rather some data?  Super Question 
 
Example 2:  From Data Points 
 
I was out collecting data again the other day.  You would think it was one of my favorite 
hobbies, however, you’d be incorrect.  Anyway, I was taking my data at ½ unit intervals.  
I came up with the following information. 
 

X Y 
0 6 
½ 5 
1 -3 

3/2 2 
2 5 

5/2 5 
3 2  

 
 



Finding a function here would be a waste of time.  I can find the area using trapezoids.  
Here it goes. 
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Remember, this means I had an accumulation of 9 units over the interval from zero to 
three. 
 
We’re done.  Here’s one last image of area approximation using trapezoids.  Can you 
make a problem that fits the image?  Let me know 
 

 
 
 
 


