
4.2 Area 
TOOTLIFTST: 
• Understand an use sigma notation for sums 
• Understand the need for Area approximation 
• How to approximate areas of plane regions 
• Find Upper and Lower bounds for areas of plane regions 
• Find the Exact area of a Region in a plane using limits 
 
 
Intro: 
In the first half of calculus, we were primarily interested in finding the slope of a line at a single point.  
Before we learned about the derivative, or its shortcut rules, we intuitively developed a way to approximate 
this by taking smaller and smaller changes in y-values of increasingly smaller x-value differences.  Once 
we took the limit of these secant slopes, we finally achieved the actual slope of the tangent line, or the 
instantaneous rate of change.  The eventual shortcut rules made the using the formal definition a matter of 
preference. 
 
The second half of calculus is the study of the integral, which ends up being an area rather than a slope.  
Now we geometric formulas for finding areas of nice shapes, but what if we wanted to find the area that 
had an irregularly shaped side, or two, or three?  We will again develop the idea of area intuitively by 
approximation.  Rather than taking small y increments divided by small x increments, we will be taking 
infinitesimally small y increments times small x increments.  In this sense, differentiation and integration 
are inverse operations.  Late, with the help of the limit, we will find the actual area under a curved surface.  
This will be long and cumbersome.  Luckily, again, there are some nice shortcut rules, thanks to the 
Fundamental Theorem of Calculus. 
 
Because we will be adding many (many, many, many) small area approximations together, too many too 
enumerate, we will develop a new symbol:  the capital Greek letter for “S” of Sigma, , which means 
“summation” 
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Sigma Notation 
The sum of terms is written as n naaaa ++++ L321
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where i is the index of summation, is the th term of the sum, and the upper and lower bounds of ia i
summation are and 1, respectively. n
 
Note:  the upper and lower sum are fixed with respect to the index, but can be anything, so the index 
doesn’t have to be denoted with an , nor does it have to start with the number one.   i
 
Example: 
Carl Freidrich Gauss is considered one of the three greatest mathematicians of all time (with Archimedes 
and Newton).  Legend has it that in Elementary school, Gauss’s teacher was looking for a way to keep the 
students occupied for a very long time, so she had then find the sum of the numbers from 1 to 100.  If  she 

were to give the problem to the students in sigma notation, it would have been as follows: .  The 

answer, of course is 5050.  But what does this have to do with Gauss?  Well he figured out the algebraic 
formula for evaluating the sum of the first n numbers, not just the first hundred!  He reduced the problem 
to simple algebraic substitution, rather than physically adding them up.  How’d he do it?  He noticed that if 
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you write out the numbers twice, one in icreasing order, the other in decreasing order, then look at the 
vertical sums of each term, a pattern emerged. 

 

 
1                     98        99      100

100                    3          2            1
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++++

L

L

___________________________ 
101                101        101        101 ++++ L  

 
He realized he now had exactly 100 values of 101.  He knew this was now a multiplication problem: 

.  This was equal to 10100.  He also realized that this sum was exactly twice the sum the teacher 
desired, since he had introduced an extra series of 1 to a hundred.  The final answer, then was 10100/2 = 
5050.  Needless to say, the teacher was astonished.  She new better next time to ask Gauss to paint her 
house with a 1 inch brush if she wanted to keep him busy. 
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Gauss’s brilliant, precocious discovery generalizes to the following: 
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Finding algebraic formulas to express the sum of many terms is not always easy or even possible, but if one 
can be found, it is fabulous, for it eliminates the need to add the terms, which can run into the thousands 
(just ask Archimedes: appropriately know as the method of exhaustion).  The sum is now a function of the 
upper bound and can be evaluated by substitution.  If Gauss could discover this formula, you can memorize 
it.  You will actually have to memorize three more. 
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OK, so now you’ve memorized these, now what?  Let’s see how they are useful.  We are not limited to 
expressions of this form.  Using algebra, we can simplify larger, unfamiliar expressions so that, hopefully, 
we can use some of the above formulas. 
 

Ex) Evaluate∑  for . 
=

+n

i n
i

1
2
3 000,100   ,000,1   ,10=n

Solution: (Note:  you can pull scarlar / constant multiple in front of the sigma, and you can 
“distribute” the sigma to each term) 
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 Now we can solve by substituting in the different values of . n
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10 0.85 
1,000 0.5035 
100,000 0.500035 
 
Notice that for n , it is not too difficult to list the ten terms in the series and add them together.  We 
can’t say the same for .  Are you convinced how nice the algebraic formula is?  Also, notice 

that the sum appears to approaching 0.5 or 
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.  This is consistent with what we 

learned about limits at infinity.  If you substitute with , you can analyze the degree of the numerator 
and denominator.  In this case, since they are both of degree one, the limit is the leading coefficient over the 
leading coefficient.  How does this manifest itself graphically?  Remember?  There will be a horizontal 

asymptote at 

x

2
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=y .  Remember, we are talking about the limit of a sum.  So, in essence, the more terms 

we add to the series, the sum gets closer and closer to a specific number.  We say such a sum converges.  A 
series or sum that increases or decreases without bound, or oscillates between two values is said to be 
divergent. 
 
So what does all this have to do with Area and Integration?  I’m glad you asked. 
 
Let’s say we have a function .  We want to find an approximation of the area of the Region 
bounded by the curve and the x-axis on the interval [ .   
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To do this, we are going to divide the region in several rectangle of equal width whose height will be 
determined by the function values.  The more rectangles we use, the more accurate we will be.  For now, 
let’s use 5 rectangles.  We are going to have the option of using either the Right End Points to determine 
each rectangle’s height, or the Left End Points.  
 
First, we find the width of each triangle.  The interval width is , 2 – 0 = 2 units (Right end pt – Left 
end pt).  We divide this by the number of rectangles we desire, , in this case 5, to achieve the uniform 
width of each rectangle.  Call this width ∆ (delta x).  So, we get the equation 
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a) Using the Right End Points of the intervals to calculate each rectangle’s height, we calculate the 

function value at each of these points.  These x-values,  ,can be listed as ic i
5
2 , where 

.  (Realize that 5,4,3,2,1=i
5
2 is the interval width AND the first x-value.  The index counts the 

multiples of the interval width.)  Remembering the area of a rectangle is width timed height, the 
sum of each of the 5 areas can be represented by the following: 
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Notice the rectangles generated using the right end points yield inscribed rectangels giving a sum that 
is LESS than the actual area of the region, hence, we call this sum the Lower Sum.  Also notice we 
still didn’t actually need to calculate five different areas then add them together.  We set up the sum, 

substituted the algebraic formula, then plugged in our value of . 5=n
 
 

b) Using the Left End Points of the intervals to calculate each rectangle’s height, we calculate the 

function value at each of these points.  These x-values can be listed as 
5
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each of the 5 areas can be represented by the following: 
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Notice the rectangles generated using the left end points yield  circumscribed rectangles, giving a sum 

that is GREATOR than the actual area of the region, hence, we call this sum the Upper Sum.   
 

Combining the two results from above, we conclude that  
6.480 < Area of the Region < 8.080 

This gives a margin of error of 8.080 – 6.480 = 1.600 square units 
 

How could we increase our accuracy, ie, narrow our margin of error? (increase the value of n, the 
number of rectangles) 
 
It is important to note that the right end points will not always achieve the Upper Sum, not will the Left 
end points always yield the Lower Sum.  It depends on the curve and the given interval. 
 
Now for the fun part, getting rid of the approximation by introducing the LIMIT.  Yipee! 
 
I don’t think I have to convince you that we can get better and better approximations of the area by 
taking smaller and smaller and smaller rectangle, that is rectangle of increasingly small widths, .  
How small can they be?  You guessed it, they can approach zero.  As the rectangle widths get 
infinitesimally small we generate an infinite number of subintervals (or rectangles), that is 

implies , and the upper and lower sums approach each other, and they both approach 

the actual area.  Reread that last sentence.  It is an important theorem which will lend itself nicely for 
our formal definition of Area of a Region in the Plane. 
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Definition of the Area of a Region in the Plane 
Let be continuous and nonnegative on the interval [ .  The area of the region bounded by the 
graph of , the x-axis, and the vertical lines and is 
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Let’s try one: 
 
Find the area of the region bounded by the graph of , the x-axis, and the vertical lines 

as shown below. 
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Notice that the function is continuous and non-negative (we will deal with negative y-values later).  
Find the width of each subinterval (we don’t want to really call them rectangles any more).  This will 
be . nx /1=∆
 
Here is an important step:  Since we will be taking the limit, and in doing so, the Upper Sums and 
Lower Sums converge to the actual sum, it doesn’t matter if we choose the Left or the Right 
endpoints!!  To make things easier ALWAYS CHOOSE THE RIGHT END POINT!!!!!  This will 
guarantee that c  xiai ∆+=
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Now that we have found our and our c , we are ready to areate (pronounced ariate—not really a 
word) 
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From this we can conclude that the area of the Region is 
4
1 . . . Exactly.  No more, no less. 

Ta Da! 
 
 
 
 
 
 
 

All images and some examples are taken from the Calculus text by Larson, Hostetler, and Edwards, fifth edition. 
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