Section 4.1: Extrema on an interval

The graph of $f(x) = -2x^3 + 9x^2 + 4$ is shown at left. Using the graph, write down the open x-intervals over which f(x) is

Increasing:

Decreasing:

Increasing and Decreasing Functions.

- 1. f(x) is **increasing** on an interval if f'(x) > 0 on that interval.
- 2. f(x) is **decreasing** on an interval if f'(x) < 0 on that interval.

Example 1. Use the above criteria to determine (verify) the intervals where $f(x) = -2x^3 + 9x^2 + 4$ is increasing and decreasing.

Section 4.1 Korpi AP Calculus AB/BC Page 1 of 5

A "Peak" is a **Relative/Local Maximum** of f

A "Valley" is a **Relative/Local Minimum** of f

Notes:

- 1. Relative Max and Mins are y-values. They occur at x-values
- 2. Together, Relative Max and Relative Mins are called Relative/Local Extrema

Using the graph above, f has

Relative Maxima at x =

Relative Minima at x =

Critical Numbers/Values and Critical Points.

An x-value c in the domain of f(x) is called a **critical number/value** if EITHER f'(c) = 0 OR f'(c) does not exist. The corresponding point (c, f(c)) is called a critical point.

From the graph above, f has critical numbers at x =

Notes:

- 1. Relative extrema can only occur on OPEN intervals (not endpoints)*
- 2. Relative extrema can only occur at critical points.
- 3. Not all critical points correspond to Relative Extrema.

Example 1 (continued). Find the critical points of $f(x) = -2x^3 + 9x^2 + 4$

Example 2. Find the critical points of $f(x) = (x-1)^{2/3} + 2$

* Depends who you ask!

Section 4.1 Korpi AP Calculus AB/BC Page 2 of 5

The First Derivative Test or Relative Extrema. (A process for determining which critical values are actually relative extrema of f(x) based on first derivative information)

Steps:

- 1. Differentiate f(x) to find the critical values c of f(x).
- 2. Set up a number line chart testing between all critical values (and any **discontinuities**).
- 3. Select convenient values from the created intervals, then plug into the FACTORED form of f'(x) (if possible) to determine the SIGN of the derivative on that interval.
- 4. Draw your conclusion: at each critical value, based upon the following, (c, f(c)) is
 - a. A **Relative Maximum** if f'(x) > 0 for x < c and f'(x) < 0 for x > c.

b. A **Relative Minimum** if f'(x) < 0 for x < c and f'(x) > 0 for x > c.

c. Not a Relative Extremum if f'(x) has the same sign on both sides of x = c.

5. (IMPORTANT) Write a concluding statement discussing the type of Relative Extrema each critical value might be based up the appropriate sign change (or not) of f'(x) at x = c.

Example 2 (continued). Find the relative extrema of $f(x) = (x-1)^{2/3} + 2$, then sketch the graph.

Section 4.1 Korpi AP Calculus AB/BC Page 3 of 5

For each of the following examples, find and justify the relative extrema of each function, if they exist. Sketch a graph of the function. Also, list the open intervals over which the function is increasing and/or decreasing.

Example 3.
$$f(x) = x^3 - 3x^2 + 3x - 1$$

Example 4.
$$f(x) = \frac{5}{x^2 - 1}$$

Section 4.1 Korpi AP Calculus AB/BC Page 4 of 5

Section 4.1 Korpi AP Calculus AB/BC Page 5 of 5