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NOTES:  LIMITS
The limit is a notion of motion.  It is the idea of approaching a specific x-value with the intent of seeing what the y-values are doing there.  With the limit, we are not really specifically interested the ACTUAL y-value AT the specific x-value, but rather the INTENDED y-value.
Imagine a bridge that spans a giant gorge.  Now imagine that the bridge has been blown up and gone.  When driving on the road from either side of the gorge, you can clearly see where the bridge WAS and where the gorge IS.  You don’t need to jump out into the middle of the gorge and risk injury just to see what’s happening there.
Now imagine that the bridge is intact.  Once again, you don’t need to set foot on the bridge to see where the gorge is.  Therefore, the existence or non-existence of the bridge is irrelevant to the existence of the gorge.  This is exactly why the limit is so important.  It gives us a way to talk about the activity “at” a point whether or not the graph exists there or not.

Here’s an example:

Let’s say a road is defined by the graph of 
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.  We want to know what the y-values are approaching as the x-values are approaching 
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, the x-coordinate of the gorge.

	From the left, it appears the y-values are approaching 4.
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	From the right, it also appears the y-values are approaching 4.
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It would appear that the gorge occurs along the road at the coordinate 
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 since the graph (the road) approach this point from either side it.  Mathematically, we say:
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If the graph approaches the same value from both sides (and ONLY if), we say the limit exists.  In this case:
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So what’s actually happening AT this point 
[image: image8.wmf](1,4)

?  Is a there a bridge or no bridge?  To determine this, we must see if the function value actually exists there and if it, in fact, equal to the limit value.  In this example, 
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In this example, since 
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, there IS a bridge, and we can safely and easily cross there. Consequently, mathematically speaking, we say the graph is continuous at this point.
Here’s a summary:
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Definition:
When a function is continuous at a point, the function value and the limit value are the same.  Knowing that, we can evaluate the limit simply by direct substitution (try finding 
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 this way), but is this ALWAYS the case?
Here’s another example that explores this question.
Find 
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When we try direct substitution, we get the indeterminate form 
[image: image14.wmf]0
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, which means that “the bridge is out,” but we are still interested in finding y-coordinate of where it might have been.  Here, all we need to do is factor the numerator, then divide out the “bad guy” factor of 
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 who was causing all that unhappiness in the denominator.  Once he’s gone, we can use direct substitution.
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*Notice that we must rewrite the limit notation up until we actually plug in the desired value.
So why does this work?  Great question!

It’s because the two functions are equivalent except at a single point, the value 
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.  The rational function has a removable discontinuity there (a bridge that’s out), while the function 
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 has a function value there (a bridge).  We can use the line, and it’s function value there, to find the limit value for the rational function.  The algebraic method above is pretty nifty for doing this.

Time to move on.

Let’s look at messy graph of 
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with many discontinuities.  Call it “graphus interruptus.”
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Discuss the continuity at the following values of x.

1. 
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Find the following:

1. 
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We can discuss continuity on an open interval and a closed interval, as well as at a point.
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Looking at the graph again, decide if the following claims about continuity on the given intervals are true or false.
1.  
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Now let’s look at a piece-wise function.  They are always interesting.

Ex)

For 
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, find the following:

a) 
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d) 
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Notice the two pieces making up the function are polynomials, which are continuous everywhere.  That means anywhere we wish to evaluate the limit, we may do so by direct substitution.  Here we just need to be sure to plug into the correct piece.

a) We can plug -1 into the top piece to get
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b) We plug -1 into the bottom piece to get 
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c) Since the limit from each side of 
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 are the same, we say the limit exists and is 3, or mathematically, 
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d) Here, we plug into the top piece to get 
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Since all of these conditions are met, and since 
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, we know the function is continuous at 
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, and also for all x-values.

Ex)

For 
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, find the following:

a) 
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d) 
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Notice this resembles the problem above, except the first piece is slightly different.

a) 
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c) 
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 since parts a) and b) are different values.  We say the limit Does Not Exist (DNE) and there is a non-removable jump discontinuity.

d) 
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Here the function value exists, while the limit does not.  They don’t necessarily have anything to do with each other, and can co-exist without the other.  Can you draw an example where neither the limit nor the function values exist at a point?  Need help?  

Here are a few examples that combine some skills:

Examples) No Calculator

1. Given the two functions f and h, such that
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a) Find all the zeros of f.

b) Find the value of p so that the function h is continuous at 
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c) Using the value of p found in part b), determine whether h is even, odd, or neither.  Justify your answer.

2. For 
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, find the value of c to make f continuous at 
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3. If 
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, what values of a and b make f continuous at 
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4. For 
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, determine the constant c, such that 
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The graph of 
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 is given   by  

a)  Find a number b such that 
[image: image69.wmf])

(

x

f

 is continuous in 
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b) Find numbers a and b such that 
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is continuous in (a,b) but not in (a,b].

c) Find the least number a such that 
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6. Find 
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 (Hint: break the function down using its piece-wise definition.)
7. Find 
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Functions that are continuous over specified intervals are very important to us as students and lovers of mathematics because of their utility in answering the questions that arise from real-world problems.  An important property of these continuous functions is called the Intermediate Value Theorem, or IVT for short.  Now, any time we come across a theorem with its own name (and I’m not talking about a name like “Theorem 1.3” or “Fred,”) you can expect it to be very important.  By merely invoking the name of the Theorem, you should know both the hypothesis, the conclusion, and how to apply the theorem.  The IVT is no exception.

Here it is:

The Intermediate Value Theorem for continuous functions:

If a function 
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 is continuous on a closed interval 
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.  Put differently, if we know of a y-value, say 
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, that resides between the y-values of the two endpoints, 
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, then we are guaranteed at least one x-value, 
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, between the endpoints that generates that y-value such that 
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For the theorem above to apply, the “if” part, known as the hypothesis, must be met before we can apply the consequence or conclusion of the theorem designated by the “then” part.
Ex1) Prove that the function 
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 must have a root on the interval 
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Step one:  Is the function continuous?  Yes, since it is a polynomial, and because polynomials are  

                             continuous for all real numbers.

Step two:  Is the function continuous on the closed interval? Yes, since it continuous everywhere.  Note that even if the interval was given to us on an open interval, we must still check for                      

                              continuity on the closed interval!!

Step three: Since the theorem applies, we now must consider the function values at the endpoints: 
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Step four:  Now we make a concluding statement as follows: “Since a root of 
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, and since 
[image: image93.wmf](1)0(3)

ff

-££

, By the IVT, 
[image: image94.wmf]()

fx

 must have at least one root in the interval 
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Ex2)  Here’s an example from the 2007 AP exam.  FR #3:
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[image: image97.png]The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above
gives values of the functions and their first derivatives at selected values of x. The function / is given by

h(x) = f(g(x)) - 6.

(a) Explain why there must be a value r for 1 < r < 3 such that h(r)




When working with limits, you should also become adroit and adept at using limits of generic functions to find new limits of new functions created from combinations and modifications to those generic functions.  I’ll show you what I mean, but first, some important properties of limits that make it all work.
1.  
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3.  Here’s the cool one: 
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4.  Similarly: 
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 , etc. . . 

In other words, we can “move” the limit anywhere in an expression to where the function part is, evaluate it, then combine the results in the prescribed manner.  This is a rare feat in mathematics.  Enjoy it.  Let’s try it out:
Given the graphs of  f  and  g are given below.
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graph of f                                                       graph of g


Determine whether the following limits exist.  If they do, then find the limit.
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You should also master finding limits of specific functions without the aid of a calculator, a graph, or your brilliant friend sitting next to you.  Here’s a list of some strictly Algebraic Methods for evaluating limits.  The names are not important, but recognizing the situations in which each method arises IS important.
1. Direct Substitution

This is the method one should ALWAYS try first.  In the case whereby direct substitution leads to the indeterminate form 
[image: image122.wmf]0
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 or 
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, this method works (for the most part.)  This method works when the function is continuous at that point.  Remember to try it first!  By the way, all subsequent methods all lead back to direct substitution, as you shall see.

2. Factor and Cancel

We’ve already seen this method.  This is an ideal method to use when the function is a rational function of containing two polynomial functions.  A 
[image: image124.wmf]0
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 in this case guarantees that the “bad guy” factor, the one causing the zero in the denominator, can be divided out with its common factor in the numerator, leaving a function that “paves” over the hole in the original graph at that point.  This allows us to use direct substitution on the remaining function.

Ex 1) 
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Ex 2)  
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HINT: Synthetic Division can help you find the remaining factors when you know a root

Ex 3)  
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3. Knowing a VA exists

Remember any time direct sub yields 
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, there is a VA at that x-value

Ex 1) 
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4. RATCON
This method works well in the 
[image: image130.wmf]0
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 case when there is a sum or difference of one or more radical terms.  It involves multiplying by a clever form of one that is the 
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 of the radical binomial.
Ex 1) 
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**NOTICE that we leave the denominator in factored form so that we can divide out the “bad guy” factor.


Ex 2) 
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5. LCM/LCM

This method works well in the 
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 case when there is a complex or compound fraction (a fraction within a fraction.)  It involves multiplying by a clever form on one that involves the Least Constant Multiple of all the denominators in the fraction.

Ex 1) 
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**NOTICE that we again leave the denominator in factored form so that we can divide out the “bad guy” factor.


Ex 2) 
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Ex 3) 
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6. Sledgehammer or Expand and Cancel and Factor and Cancel . . . .
This method works well in the 
[image: image138.wmf]0
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 case when there is a some obvious math to do, like expanding a binomial or distributing factors.  Usually expanding everything out and collecting like terms will lead to something in which the “bad guy” factor can then be removed.
Ex 1) 
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Ex 2) 
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7. Getting’ Triggy Wit It 

This method involves cleverly rewriting trig expressions as equivalent ones that are easier to work with.  It’s basically the reason we spent time in precal doing trig proofs.  This method requires memorizing two important limits that will repeatedly appear in many problems.  You’ll have fun doing a little numeric and algebraic gymnastics with these.
MEMORIZE the following:
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Ex. 1) 
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Ex 2) 
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Ex 4) 
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Ex 6) 
[image: image148.wmf]/4

1tan

lim

sincos

x

x

xx

p

®

-

-

=
Ex 7) 
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8. General Cleverness:
These are when all else fails.  What can you do to an expression without changing its values?  Multiply by a clever form of one, add a clever form of zero, make equivalent substitutions (like trig identities, 
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 with its piecewise definition or 
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), and anything else you can think of.
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9. A Limit Sandwich: Also called the Squeeze Theorem or Sandwich Theorem 
If 
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This is a pretty common sense, and tasty, theorem.  Basically if one function is above another one (or equal to it) all the time except maybe at one point, and if the to functions approach the same y-value at that point, then any function that is contained within them must also be “sandwiched” or “squeezed” through the same y-value at that point.
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Here’s a visual 
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Another way to thing about it is that h and g are the bread, and f is the salami.

I know what you’re saying, or thinking: How and the heck do I go about finding such functions that bound the one I’m interested in?  Where do we get the bread?  That’s a great question!  Sometimes, they can be difficult to find.  Other time, they magically appear through algebraic manipulations. In fact, we’ve already done this.  Here’s and example:


[image: image160.wmf](

)

(

)

0

00000

tan

lim?

tansinsin1sin1

limlimlimlimlim111

coscoscos

x

xxxxx

x

x

xxxx

xxxxxxx

®

®®®®®

=

æöæöæöæö

=====

ç÷ç÷ç÷ç÷

èøèøèøèø


Here, finding the desired limit of 
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 at zero, we “stumbled” across two other functions that contain our desired function that both have limits of one; therefore, we know our desired limit must be one.  Here’s the graph.
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Here, we didn’t really need to know what was going on graphically behind the scenes.  The Squeeze Theorem worked its magic surreptitiously.  Generally, though, you’ll be asked to find the limit of a function at a point, and you will be given information about the ones bounding it.

Here’s an example:

Ex) If 
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Into the Great Beyond: LIMITS AT INFINITY
Up to now, we’ve been finding limits at a single point, a specific x-value. There’s one last important task when evaluating limits, and that is checking them on the very, bitter ends of a graph, that is, for a function
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.  The end behavior of a graph is very important, especially when trying to graph it by hand or answering test questions related to end behavior.

Assuming a graph DOES have end behavior (unlike 
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), there are only a couple of things that can happen.

1. The graph can increase without bound (like 
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2. The graph can decrease without bound (like 
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3. The graph can oscillate between two fixed values (like 
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4. The graph will taper off towards a specific y-value

· 
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The last case is of particular interest to most math students.  Here’s why:

Definition:
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 if and only if there exists a Horizontal Asymptote (HA) at 
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Horizontal Asymptotes are a special quality of many Rational Functions (a polynomial over a polynomial.)  There are 3 cases based on the comparison of the degrees of the leading terms of the numerator and denominator.  Remember the leading terms are not necessarily the ones written in front, but rather the terms with the largest power of x.
When taking limits at infinity, we’re essentially looking for the existence or non-existence of any HAs.  We can do this by analyzing the effective growth rates of the numerator and denominator.  Here are the three cases:

Case 1: The degree of denominator is greater by any amount than the numerator’s.  In this case, for extremely large values of x, even larger than that, the denominator is getting bigger faster than the numerator, so the fractions are getting smaller, and smaller, and smaller, and smaller, approaching nothing, or ZERO.  The other terms in the fractions are insignificantly small in terms of contributing to the growth, and are only there to assure us that the values will only APPROACH and not EQUAL zero.  In this case, there will ALWAYS be an HA at 
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Ex) 
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 (but from the negative side)

Case 2: The degree of the numerator and denominator are exactly the same.  In this case, the top and bottom are essentially growing at the same rate.  Again the trailing terms are insignificantly small compared to the leading terms.  This means that the fractions or ratios are approaching the ratio of the leading terms, or the leading terms coefficients!!  In this case, there will always be an HA at 
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Ex) 
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Case 3: The degree of the numerator is greater by any amount than the denominator.  In this case, the numerator’s growth is outpacing the denominator’s.  The fractions or ratios are growing, and growing, and growing, forever, either in the positive or negative directions.  The limit will not exist and there will be no HA.  However, there will still be an asymptote that will take the equation of the quotient (degree difference), such as a Slant (Linear), Quadratic, Cubic asymptote, but unless you are working on your math Ph.D. or just a math geek, you will likely never have to worry about them, We will look at Slant Asymptotes, though.
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(to determine what type of infinity it will be, plug in a representative huge value into the leading 
terms and look what the resulting sign will be.)

Ex) 
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Slant Asymptotes:  When the degree of the numerator is one larger than the denominator, there is an SA at 
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 as long as the remainder is NOT ZERO (what have we then?)


Ex) 
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, but there is an SA.  We find it by long division:
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Limits at infinity: Bonus Problems!
Different functions grow at different rates for large values:  log functions grow slowly, polynomials grow faster by order of degree, exponential growth functions grow faster than a polynomial of any degree, factorials are next, and the king of growth is 
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  If you have a ratio of these types of functions, you can find limits at infinity by analyzing respective growth rates.
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Ex3) 
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Ex4) 
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Ex5) 
[image: image203.wmf]!

lim?

x

x

x

x

®¥

=






Ex6) 
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Ex7) 
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Ex9) 
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Ex10) 
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Ex11) 
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Which of the above functions have Horizontal Asymptotes???

Before we close out limits altogether, let’s summarize a bit:

1. The limit is a y-value

2. The limit can exist independently of a function value

3. The limit only exists if the two one-sided limits BOTH exist and are the SAME value.

4. When the left-sided limit equals the right-sided limit and both equal the function value, the function is said to be continuous at that point.

5. If we have our calculator and don’t know how to evaluate the limit, we can always graph it and plug values in on either side of our target value.

6. When evaluating limits algebraically, indeterminate forms such as 
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 require us to roll up our sleeves and get to work.  The limit may or may not exist.

7. Piecewise functions are the exception to every rule.

8. Our friend 
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 and his family members will always have a jump discontinuity at the x-value that yields 
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.  Evaluating if from either side of this involves plugging in ANY value from that side and evaluating, since the graph is composed two horizontal lines.

9. A Limit can fail to exist at a point in any of the following circumstances:

a. A jump discontinuity  
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b. A Vertical Asymptote  
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c. Graph not defined from both sides  Ex) 
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d. Oscillation between two fixed values   Ex) 
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e. Oscillation between two increasing large values  Ex) 
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10. We can squeeze functions through a point even if the function doesn’t exist there.  Ex) 
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11. Limits form the basis of both differential and integral Calculus
12. Limits are fun
� EMBED Equation.DSMT4  ���





A function � EMBED Equation.DSMT4  ���is continuous at a point � EMBED Equation.DSMT4  ���if


	1.  � EMBED Equation.DSMT4  ��� is defined


	2.  � EMBED Equation.DSMT4  ��� exists


	3.  � EMBED Equation.DSMT4  ���





Definition: 


If � EMBED Equation.DSMT4  ��� or � EMBED Equation.DSMT4  ���, then there exists a vertical asymptote at � EMBED Equation.DSMT4  ���.





Definition:


A function � EMBED Equation.DSMT4  ���is continuous on an open interval � EMBED Equation.DSMT4  ��� if it is continuous at each and every point in that interval.  A function� EMBED Equation.DSMT4  ���is continuous on a closed interval � EMBED Equation.DSMT4  ��� if it is continuous on the open interval � EMBED Equation.DSMT4  ��� and if the endpoints exhibit the following:


i) � EMBED Equation.DSMT4  ���     and         ii) � EMBED Equation.DSMT4  ���





 � EMBED Equation.DSMT4  ���





 � EMBED Equation.DSMT4  ���





 � EMBED Equation.DSMT4  ���





In this graph,   � EMBED Equation.DSMT4  ��� for all x except possibly at � EMBED Equation.DSMT4  ���.  Since � EMBED Equation.DSMT4  ��� and � EMBED Equation.DSMT4  ���, we know that � EMBED Equation.DSMT4  ��� too!





 � EMBED Equation.DSMT4  ���





 � EMBED Equation.DSMT4  ���





 � EMBED Equation.DSMT4  ���





So there is a HA at � EMBED Equation.DSMT4  ���.  We already knew there was a VA at � EMBED Equation.DSMT4  ���
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