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NOTES:  Derivatives
Calculus grew out of 4 major problems that were perplexing society during the 17th century. 
1. The tangent line problem

2. The velocity and acceleration problem

3. The minimum and maximum problem

4. The area and accumulation problem

Why were these problems so . . . problematic?  Well, because they all deal with quantities that change or deal with variable rates.  The algebra of the day was only sufficient to handle stagnant, unchanging, shall I say BORING quantities.  A new set of tools was needed to routinely calculate with quantities that were ever changing.  In fact, change WAS in the air.

It was the brilliant mathematicians of the day who ultimately came to the rescue.  Guys like Pierre de Fermat, Rene Descartes, Christian Huygens, and Isaac Barrow contributed their brilliance, but it wasn’t until two of my heroes, at roughly the same time in different parts of the world, solved the problems.  There names were Isaac Newton and Gottfried Wilhelm Leibniz.  The debate still exists today (in very small, exclusive circles) over who should get the singular credit for the discovery of calculus.

Let’s take a look at the tangent line problem.

Finding the slope of a line was easy to do.  One needed only two points, any two points, on the line.  The slope was nothing more than the ratio of the change in y-values over the change in x-values.  This value was always the same at every point on the line . . . . boring!

What if we wanted to find the slope of a curve!!  What does that mean, exactly?  It means that we are interested in the slope of a single line that is tangent to the curve at a specific point.  That line is called the tangent line.
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For example, in the graph to the right, we’d like to find the slope of the graph at the point 
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.  This would also be the slope of the drawn tangent line.  

Why is this so interesting to us?  Well, it tells us exactly how fast that graph is changing at that single moment in time, and that instant.  It is the instantaneous rate of change of that graph, whose y-values are ALWAYS changing.

Why can’t we do it?  Well, it’s because we have only ONE POINT, and the slope equation from algebra requires TWO POINTS!!

OK, then, we’ll choose another point on the curve, but not too far away.  We’ll choose another x-value that is, say, h units away from our desired 
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.  See what I did there?  I plugged my new x-value into the function 
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Now we can calculate the slope or the line containing these two points, known as the secant line, using our algebra formula.

Again, our two points are now 
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This gives us an expression for the slope of the secant line between the two points, but it doesn’t seem anything like a numeric value that is supposed to represent, or even approximate the slope of the tangent line.  We can simplify the expression above to make it slightly more “user friendly.”
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Here’s the mathmagical secret:  we defined h to be the distance between the two x-values we had to use.  By use of the limit, we can let h get infinitely small, approaching zero.  This has the effect of forcing the two points upon each other.  The secant line slope then approaches the tangent line slope!!!  Mathematically speaking,
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This means that one the graph of 
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, at the point 
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, the graph is rising up one unit for every one unit it moves to the right.  It is the instantaneous rate or change at this point.  In the very next instant, this rate would be smaller since the tangent line would be less steep just to the right of the point.

We can now find how fast the graph is changing at any other point in a similar fashion . . . . but we can do better than that!  

We can actually do it for an arbitrary point, say the point 
[image: image12.wmf](

)

,()

xfx

, for an arbitrary function 
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treating the point as a constant, specific point, do all the math similar to what we did above, then end up with an expression involving x, which could then represent ANY point!  Here we go.

· Slope of the secant line of 
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 between the two points 
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· Slope of the tangent line of 
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at the point 
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In this picture, you can see the secant lines approaching the tangent line as h gets progressively smaller.

We have a special name for this variable function of x that enables us to find the slope of the tangent line of any function at a specific point: The derivative of 
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, and we denote it by the following mathematical notations: 
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Let’s try out our new toy:

Ex1)  Find the derivative of the following function using the limit definition of the derivative.
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Solution
So, all we really need to do is to plug this function into the definition of the derivative, (1), and do some algebra.  While, admittedly, the algebra will get somewhat unpleasant at times, but it’s just algebra so don’t get excited about the fact that we’re now computing derivatives.

 

First plug the function into the definition of the derivative.
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Be careful and make sure that you properly deal with parenthesis when doing the subtracting.  

 

Now, we know that we can’t just plug in 
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since this will give us a division by zero error.  So we are going to have to do some work.  In this case that means multiplying everything out and distributing the minus sign through on the second term.  Doing this gives,
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Notice that every term in the numerator that didn’t have an h in it canceled out and we can now factor an h out of the numerator which will cancel against the h in the denominator.  After that we can compute the limit.
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So, the derivative is,
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Ex2) Use the definition of the derivative as a limit to find the derivative function 
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Ex3) Use the definition of the derivative as a limit to find the derivative function 
[image: image42.wmf]()

Rz

¢

 for  
[image: image43.wmf]()58

Rzz

=-


Ex4) Use the definition of the derivative as a limit to find the derivative function 
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In this example we have finally seen a function for which the derivative doesn’t exist at a point.  This is a fact of life that we’ve got to be aware of.  Derivatives will not always exist.  Note as well that this doesn’t say anything about whether or not the derivative exists anywhere else.  In fact, the derivative of the absolute value function exists at every point except the one we just looked at, 
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This leads to the following definition.

Definition
	A function
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 is called differentiable at 
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exists. 
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is called differentiable on an interval if the derivative exists for each point in that interval.


Because the previous limit definition of the derivative was a function of h, we must define the derivative at a point in a slightly different fashion, as a function of x.

[image: image146.png]1,2)

v

3x-xt2




Definition of the derivative of a function 
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 at a point 
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In this definition, we still choose another point, 
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, but instead of letting the distance between them go to zero, we let our variable point 
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 approach the point we’re interested in 
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This gives us a way to calculate differentiability at a point.

Definition
	A function
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 is called differentiable at 
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This translates into the fact that, not only do the y-values have to be approaching each other (connected graph) but the slopes have to be approaching each other (smoooooth connection.)
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Given any number x for which this limit exists, we assign to x the number f'(x). So we can
regard f' as a new function, called the derivative of f and defined by Equation 2. We
know that the value of f’ at x, f'(x), can be interpreted geometrically as the slope of the
tangent line to the graph of f at the point (x, f(x)).

The function f' is called the derivative of f because it has been “derived” from f by
the limiting operation in Equation 2. The domain of f” is the set {x| f'(x) exists} and may
be smaller than the domain of f.




[image: image61.png]If we use the traditional notation y = f(x) to indicate that the independent variable is x and
the dependent variable is y, then some common alternative notations for the derivative are
as follows:
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[image: image62.png]The symbols D and d/dx are called differentiation operators because they indicate the
operation of differentiation, which is the process of calculating a derivative.

The symbol dy/dx, which was introduced by Leibniz, should not be regarded as a ratio
(for the time being): it is simply a synonym for f’(x). Nonetheless. it is a very useful and
suggestive notation, especially when used in conjunction with increment notation.

Referring to Equation 2.8.4, we can rewrite the definition of derivative in Leibniz notation
in the form





[image: image63.png]If we want to indicate the value of a derivative dy/dx in Leibniz notation at a specific num-
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We have seen an example already involving 
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Here, at 
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, the function is continuous, but NOT differentiable.  The slopes from the left are negative one, while the slopes from the right are positive one.  Graphically, because we clearly see a SHARP TURN at 
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, we know the function is not differentiable there.

The next theorem shows us a very nice relationship between functions that are continuous and those that are differentiable. 

 

Theorem
	If 
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is differentiable at 
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The contrapositive of this is also true:

Theorem
	If 
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is NOT continuous at 
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Ex1)  Discuss the Differentiability of 
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Solution:

First notice that 
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Now we calculate the left and right-side limits of the slopes:
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Since 
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, the function is differentiable at 
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It’s worth verifying that it IS in fact continuous as well at 
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What does all this mean graphically?  Let’s sketch it and see.
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In this case, without the equation, we cannot tell where the parabola actually ends and the line begins.

Ex2)  Discuss the Differentiability of 
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Solution:

First notice that 
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 still.

Now we calculate the left and right-side limits of the slopes:
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Since the right-sided derivative does not exist, the function is NOT differentiable at 
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You can clearly see from the graph, that although the slopes from either side APPEAR to be the same on either side of 
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 (in fact, they ARE), because the graph is NOT continuous (a jump discontinuity exists), the function is NOT differentiable at 
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So far, we have discussed 2 ways whereby a function can not be differentiable.  Here are a couple more cases:
Ex3) Discuss the differentiability of 
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()

fxx

=

 at 
[image: image98.wmf]0

x

=


Solution: 
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We get the same result from the other side of 
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, so we are approaching infinite slopes (vertical slopes) from either side, therefore, the slope does not exist at 
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 and the function is not differentiable at 
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.  Here’s what the graph looks like:
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We call this the “bird from Kindergarten” graph.  At 
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 we have what’s called a “cusp,” which means “sharp point” in no particular language.  The sharp turn in the 
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can fall into the family of cusps.

Notice in this example, the derivative doesn’t exist because it’s approaching infinity from both sides, but one could argue also that it is negative (and getting increasingly so) from the left side, while it’s positive (and getting increasingly so) from the left side.  Take your pick; the point is, although it IS continuous, it is not differentiable at 
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Ex4) Discuss the differentiability of 
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Solution:
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And
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Either way, the limits of the secant slopes do not exist, so 
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 is NOT differentiable at 
[image: image111.wmf]0

x

=

.  Here’s what the graph looks like:
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At 
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, you can see that the slope are approaching vertical.  That’s because a vertical tangent line exists there.  Since a vertical slope is infinite (or undefined) since you cannot ski down it, the derivative (slope) does not exist.
Face it!

Accept it!

Memorize it!

Here’s a summary so far of where a function’s derivative fails to exist at a point (or where it is NOT differentiable.)
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[image: image114.png]A graphing calculator or computer provides another way of looking at differentiability.
If f is differentiable at a, then when we zoom in toward the point (a.f(a)) the graph
straightens out and appears more and more like a line. (See Figure 9. We saw a specific
example of this in Figure 3 in Section 2.8.) But no matter how much we zoom in toward a
point like the ones in Figures 7 and 8(a), we can’t eliminate the sharp point or corner (see
Figure 10).
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If a function 
[image: image115.wmf]()

fx

 is differentiable at 
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You should try it at 
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for the following functions:
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Which of them are locally linear (errrrr . . . differentiable) at 
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SKETCHING GRAPHS OF 
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 from graphs of 
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[image: image124.png]EXAMPLE 1 The graph of a function f is given in Figure 1. Use it to sketch the graph of
the derivative f'.
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[image: image125.png]SOLUTION We can estimate the value of the derivative at any value of x by drawing the
tangent at the point (x, f(x)) and estimating its slope. For instance, for x = 5 we draw the
tangent at P in Figure 2(a) and estimate its slope to be about 2 , so f'(5) =~ 1.5. This
allows us to plot the point P'(5, 1.5) on the graph of f’ directly beneath P. Repeating
this procedure at several points, we get the graph shown in Figure 2(b). Notice that the
tangents at A, B, and C are horizontal, so the derivative is O there and the graph of f’
crosses the x-axis at the points A, B', and C", directly beneath A, B, and C. Between A
and B the tangents have positive slope, so f'(x) is positive there. But between B and C
the tangents have negative slope, so f'(x) is negative there.
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Now try the following exercises:

[image: image129.png]1-3 Il Use the given graph to estimate the value of each derivative.
Then sketch the graph of f'.
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[image: image132.png]4. Match the graph of each function in (a)—(d) with the graph of
its derivative in I-TV. Give reasons for your choices.

(a) N (b) N
0 \x 0 X

(©) N (d) N
T« 0 *




[image: image133.png]1

y I y
0
y v i
R
0 ;





In 5-13, a graph of a function 
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 is given.  On the same axes, sketch a graph of 
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[image: image139.png]16-18 11l Make a careful sketch of the graph of f and below it
sketch the graph of f” in the same manner as in Exercises 5-13.
Can you guess a formula for f'(x) from its graph?

16. f(x) =sinx 17. f(x) =e*
18. f(x) =Inx




[image: image140.png]37. The graph of f is given. State, with reasons, the numbers at
which f is not differentiable.
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[image: image141.png]38. The graph of g is given.
(a) At what numbers is g discontinuous? Why?
(b) At what numbers is g not differentiable? Why?
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[image: image142.png]9. Graph the function f(x) = x + y/[x[. Zoom in repeatedly, first
toward the point (—1. 0) and then toward the origin. What is
different about the behavior of £ in the vicinity of these two
points? What do you conclude about the differentiability of £?





[image: image143.png]48. When you turn on a hot-water faucet, the temperature T of the
water depends on how long the water has been running.
(a) Sketch a possible graph of T as a function of the time 7 that
has elapsed since the faucet was turned on.
(b) Describe how the rate of change of T with respect to ¢
varies as 7 increases.
(c) Sketch a graph of the derivative of T.
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_1283612022.unknown

_1283612059.unknown

_1283611674.unknown

_1283611564.unknown

_1283611474.unknown

_1283611507.unknown

_1283611463.unknown

_1283610366.unknown

_1283610874.unknown

_1283610966.unknown

_1283610617.unknown

_1283610775.unknown

_1283610313.unknown

_1283610024.unknown

_1283515415.unknown

_1283515416.unknown

_1283515057.unknown

_1283515135.unknown

_1283514640.unknown

_1283514516.unknown

_1283514535.unknown

_1283514568.unknown

_1283514438.unknown

_1283514175.unknown

_1283514190.unknown

_1283514332.unknown

_1283513978.unknown

_1283513989.unknown

_1283512710.unknown

_1283513016.unknown

_1283513445.unknown

_1283513741.unknown

_1283513829.unknown

_1283513586.unknown

_1283513392.unknown

_1283513426.unknown

_1283513023.unknown

_1283513077.unknown

_1283512740.unknown

_1283512803.unknown

_1283512726.unknown

_1283512679.unknown

_1283512690.unknown

_1283512414.unknown

_1283512072.unknown

_1283512183.unknown

_1283512336.unknown

_1283512343.unknown

_1283512392.unknown

_1283512291.unknown

_1283512174.unknown

_1283512016.unknown

_1283512055.unknown

_1283512005.unknown

_1283509291.unknown

_1283510443.unknown

_1283511196.unknown

_1283511688.unknown

_1283511843.unknown

_1283511655.unknown

_1283510503.unknown

_1283510978.unknown

_1283510462.unknown

_1283509787.unknown

_1283510422.unknown

_1283510434.unknown

_1283510401.unknown

_1283509761.unknown

_1283509773.unknown

_1283509751.unknown

_1283251789.unknown

_1283509152.unknown

_1283509268.unknown

_1283509279.unknown

_1283509230.unknown

_1283508980.unknown

_1283508998.unknown

_1283508896.unknown

_1283248748.unknown

_1283248769.unknown

_1283248825.unknown

_1283248756.unknown

_1283248585.unknown

_1283248674.unknown

_1283248135.unknown

