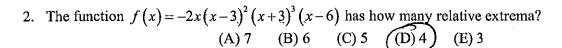
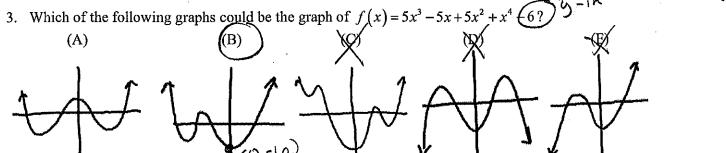
Name

Date

Period


Worksheet 3.1—Polynomial Functions


Show all work on a separate sheet of paper. Give simplified, exact values for all answers. No Calculator is Permitted unless specifically stated.

I. Multiple Choice

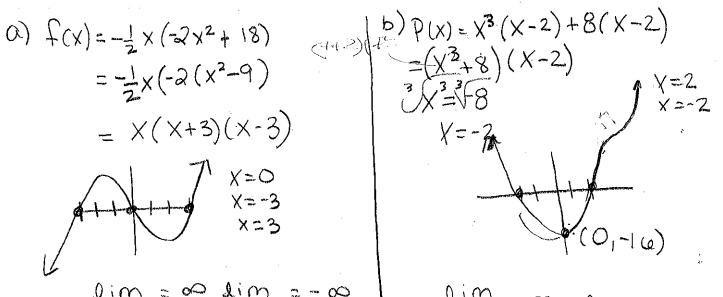
1. Which of the following functions is NOT a polynomial?

(A)
$$f(x) = \frac{-2.3x^4 - 6x + 11}{4}$$
 (B) $h(t) = 5t^2 (t^{-1}) + 3$ (C) $P(x) = \pi x (x^2 - ex)$ (D) $y = 5$ (E) $h(x) = 2.6x - 7.7x^3 + \sqrt{2}x$

- 4. Which of the following statements about a polynomial function with degree n is false?
 (A) has at most n turning points (B) may have up to n distinct roots
 (C) if n is odd, it has at least one root (D) if n is even, it may have no roots (E) all statements are true
- 5. A function whose only roots are x = 1 (m2), x = -2 (m3), and x = 3 (m1), that passes through the point (-1,-2) has a y-intercept of what? $+ (x) = A (x-1)^{2} (x+2)^{3} (x-3)$

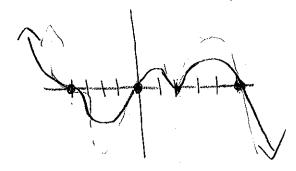
tercept of what?
$$f(x) = A (x-1)^{2} (x+2)^{3} (x-3)$$
(A) 24 (B) -24 (C) $\frac{1}{8}$ (D) 2 (E) -3 $\frac{1}{4}$ = $A(-1-1)^{2} (-1+2)^{3} (-1-3)$

$$-2 = A(-1)^{2}(1)^{3}(-4)$$

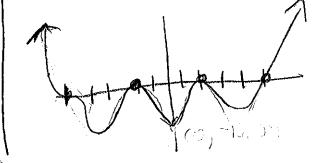

$$-2 = A(4)(1)(-4)$$

$$A = -\frac{2}{-1}$$

(a)
$$f(x) = -\frac{1}{2}x(18-2x^2)$$
 (b) $P(x) = x^4 - 2x^3 + 8x - 16$


a)
$$f(x) = -\frac{1}{2} \times (-2x^2 + 18)$$

= $-\frac{1}{2} \times (-2(x^2 - 9))$
= $\times (x+3)(x-3)$


7. Sketch the following functions. Be sure to clearly show the roots and the multiplicities at each root.

(a)
$$f(x) = -3x(x-5)(x+4)^3(x-2)^2$$
 (b)
 $X = O(m) X = 5(m) X = -4(m3)$

(b)
$$h(x) = \frac{2}{3}(x-2)^2(x+2)^2(x-5)(x+5)^3$$

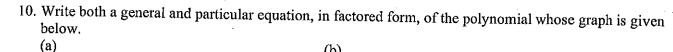
$$X = 2(m2)$$
 $X = -2(m2)$
 $Y = 5(m1)$ $X = -5(m3)$

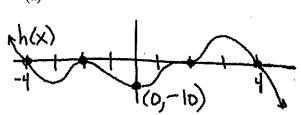
8. Write a (a) general equation in factored form of a polynomial whose only roots are x = 3 (m2), x = -4 (m1), and x = 0 (m3) and (b) a particular equation if the same polynomial passes through (-2,2)

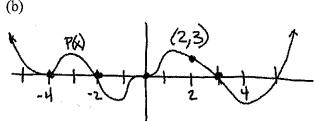
a)
$$f(x) = Ax^{3}(x-3)^{2}(x+4)$$

b) $a = A(x)^{3}(-2-3)^{2}(-2+2)$
 $a = A(-8)(a5)(a)$
 $a = A(-8)(a)$
 $a = A(-8)(a)$
 $a = A(-8)(a)$
 $a = A(-8)(a)$

9. Write an equation in factored form of a cubic polynomial, f, with the following characteristics: f(-5) = f(1) = f(6) = 0, f(-1) = -3


$$f(x) = A(x+5)(x-1)(x-6)$$


$$-3 = A(-1+5)(-1-1)(-1-6)$$


$$-3 = A(4)(-2)(-7)$$

$$-3 = A(56)$$

$$A = -\frac{3}{56} \left[f(x) = \frac{-3}{56} (x+5)(x-1)(x-6) \right]$$

$$P(x) = A(x+4)(x+2)^{2}(x-2)^{3}(x-4)$$

$$P(x) = A(x+4)^{2}(x+2)(x-3)(x-5)$$

$$P(x) = A(x+4)^{2}(x+2)(x-3)(x-5)$$

$$P(x) = A(x+4)^{2}(x+2)(x-3)(x-5)$$

$$3 = A(x+4)^{2}(x+2)(x-3)(x-5)$$

$$P(x) = \frac{3}{25}(x+4)^{2}(x+2)(x-3)(x-6)$$

$$P(x) = \frac{3}{25}(x+4)^{2}(x+2)(x-3)(x-6)$$

$$| \Theta P(x) = A x^{3} (x+4)^{2} (x+2) (x-3) (x-5)$$

$$3 = A (2)^{3} (\omega)^{2} (4) (-1) (-3,)$$

$$3 = A (8 \cdot 36 \cdot 4 \cdot -1 \cdot -3)$$

$$3 = A (3456)$$

$$P(x) = \frac{3}{3456} \times (x+4)^{2} (x+2) (x-3) (x-5)$$

11. (Calculator Permitted) Find all the zeros and relative extrema of the function. List the open intervals of increasing and decreasing. $f(x) = x^4 + 0.1x^3 - 6.5x^2 + 7.9x - 2.4$

Zeros:
$$X = -3.1, .5, 1.33, 1.367$$

 $Extremain (-2.086, -29.137), max (.751, .207), min (1.26, .049)$
Increasing: $(-2.086, .751) \cup (1.26, \infty)$
Decreasing: $(-\infty, -2.086) \cup (.751, 1.26)$

- 12. Which of the following statements are true regarding the graph of the cubic polynomial $f(x) = x^3 + bx^2 + cx + d$? If the statements are false, explain why.
 - a. It intersects the y-axis in one and only one point.
 - b. It intersects the x-axis in at most three points. $\mathbf{\tilde{x}}$
 - c. It intersects the x-axis at least once.
 - For |x| very large, it behaves like the graph of $y = x^3$
 - It is symmetric with respect to the origin.
 - It passes through the origin.
 - It has at least two relative extrema.