Name \qquad Date \qquad Period \qquad

Worksheet 4.3-Logarithmic Functions

Show all work. All answers must be given as either simplified, exact answers. No calculator is permitted unless otherwise stated.

Multiple Choice

1. (Calculator permitted) What is the approximate value of the common \log of 2 ?
(A) 0.10523
(B) 0.20000
(C) 0.30103
(D) 0.69315
(E) 3.32193
2. (Calculator permitted) Which statement is false?
(A) $\log 5=2.5 \log 2$
(B) $\log 5=1-\log 2$
(C) $\log 5>\log 2$
(D) $\log 5<\log 10$
(E) $\log 5=\log 10-\log 2$
3. Which statement is false about $f(x)=\ln x$?
(A) It is monotonic increasing (B) It is an odd function (C) It is continuous over its domain
(D) Its range is all real numbers (E) It has a vertical asymptote
4. Which of the following is the inverse of $f(x)=2 \cdot 3^{x}$?
(A) $f^{-1}(x)=\log _{3}\left(\frac{x}{2}\right)$
(B) $f^{-1}(x)=\log _{3}\left(\frac{x}{3}\right)$
(C) $f^{-1}(x)=2 \log _{3} x$
(D) $f^{-1}(x)=3 \log _{2} x$
(E) $f^{-1}(x)=0.5 \log _{3} x$

Short Answer

5. Express each of the following equations in exponential form.
(a) $\log 0.1=-1$
(b) $\ln y=5$
(c) $\log _{2}(x-1)=4$
6. Express each of the following equations in logarithmic form.
(a) $4^{-3 / 2}=0.125$
(b) $e^{x}=2$
(c) $7^{3}=343$
7. Evaluate the following expressions.
(a) $\log _{49} 7$
(b) $2^{\log _{2} 37}$
(c) $e^{\ln \sqrt{7}}$
(d) $\log _{4} \sqrt{2}$
(e) $\log _{4} 8$
(f) $\log _{6} 1$
(g) $\ln \left(\frac{1}{e}\right)$
8. Solve for x in each of the following equations.
(a) $\log _{2} 16=x$
(b) $\log _{5}(2 x-1)=2$
(c) $\log _{x} 16=4$
(d) $\log _{2}\left(\log _{9} x\right)=-1$
9. Use a calculator and possibly the change of base formula to evaluate the following correct to 3 decimal places.
(a) $\log (3 \sqrt{2})$
(b) $\ln (\log 20)$
(c) $\log _{6} 13$
(d) $\frac{\log _{1 / 2} 5}{\log _{5} e}$
10. Find the equation of the function of the $y=\log _{b} x$ whose graph is given below.
(a)

11. Find the domain of each of the following functions:
(a) $f(x)=\log _{6}(8-2 x)$
(b) $f(x)=\ln x+\ln (2-x)$
(c) $f(x)=\log _{4}\left(x-x^{2}\right)$
(d) $k(x)=\sqrt{x-2}-\log _{5}(10-x)$
(e) $f(x)=\frac{5}{\ln \left(x^{2}-1\right)}$
12. For each of the following functions, find the domain then find the inverse function $f^{-1}(x)$.
(a) $f(x)=\log _{2}(\log x)$
(b) $f(x)=\ln (\ln (\ln x))$
13. (Calculator permitted) The Beer-Lambert Law of absorption gives the light intensity I (in lumens), in water at a depth of x feet, and is modeled by $\log \frac{I}{12}=-0.00235 x$. What is the intensity of the light at a depth of 30 feet? At what depth is the intensity 5 lumens?
