Name \qquad Date \qquad Period \qquad

Worksheet 4.2—Exponential and Logistic Modeling

Show all work. All answers must be given as either simplified, exact answers or approximations with 3decimal accuracy. Calculators ARE permitted.

Multiple Choice

1. What is the percent growth rate of $M(t)=1.25 \cdot 1.049^{t}$
(A) 49%
(B) 23%
(C) 4.9%
(D) 2.3%
(E) 1.23%
2. What is the percent decay rate of $q(k)=22.9 \cdot 0.834^{k}$
(A) 22.7%
(B) 16.6%
(C) 8.34%
(D) 2.27%
(E) 0.834%
3. A single-cell amoeba doubles every 4 days. About how long will it take one amoeba to produce a population of 1000 ?
(A) 10 days
(B) 20 days
(C) 30 days
(D) 40 days
(E) 50 days
4. The number of children infected with typhoid in a small village is modeled by the logistic equation $R(t)=\frac{789}{1+16 e^{-0.8 t}}, R$ is the number of children infected after t days. Based on this model, which of the following is true?
(A) After 0 days, 16 children are infected (B) After 2 days, 439 children are infected
(C) After 4 days, 590 children are infected
(D) After 6 days, 612 children are infected
(E) After 8 days, 769 children are infected
5. Which exponential function models decay with an initial value of 12 , decreasing at a rate of 0.47% per week?
(A) $S(t)=47(0.0012)^{t}$
(B) $S(t)=12(0.0047)^{t}$
(C) $S(t)=12(0.9953)^{t}$
(D) $S(t)=47(0.0995)^{t}$
(E) $S(t)=(0.47)^{t}$
6. Which exponential function models growth with an initial value of 0.7 g , doubling every 3 days.
(A) $S(t)=0.7(2)^{t}$
(B) $S(t)=0.7(2)^{t / 3}$
(C) $S(t)=0.7(3)^{t / 7}$
(D) $S(t)=0.7(7)^{t}$
(E) $S(t)=0.7(2)^{3 t}$
7. A quantity Q grows exponentially over time t. At time $t=2, Q=16$ grams, and time $t=5$, $Q=128$ grams. How much is Q at $t=3$?
(A) 60 grams
(B) 16 grams
(C) 106 grams
(D) 32 grams
(E) 38 grams
8. A substance grows exponentially as $N(t)=A b^{t}$, where $N(t)$ is the quantity of the substance after t hours and N is the original quantity of the substance. If the substance grows from 700 grams to 2100 grams in 3 hours, find the weight/mass of the substance after 9 hours.
(A) 18903 grams
(B) 18900 grams
(C) 18927 grams
(D) 700 grams
(E) 700.632 grams
9. A evil cloning replicator reproduces itself at a rate that the population of replicators quadruples every 3 hours. At $t=0$, there are 6 evil cloning replicators.
(a) Write an equation for the number of replicators $R(t)$ at time t hours.

(b) How many replicators are there after 48 hours?
(c) After how many hours will the number of replicators reach $1,000,000$? How many days is this?
10. The half-life of a radioactive isotope describes the amount of time that it takes half of the isotope in a sample to decay. In the case of radiocarbon dating, the half-life of carbon 14 is 5,730 years. A fossil is found that has 35% carbon 14 compared to the living sample. How old is the fossil?
11. Determine an equation of the form $f(x)=\frac{L}{1+C e^{-k x}}$ for the function whose graph is shown below.

