Name \qquad Date \qquad Period \qquad

Worksheet 2.5—Building Functions from other Functions

Give simplified, exact values for all answers. No Calculator is Permitted unless specifically stated.

I. Multiple Choice

\qquad 1. If the point $(3,4)$ lies on the graph of an invertible function f, then which of the following points lies on the graph of its inverse?
(A) $(4,3)$
(B) $(3,-4)$
(C) $\left(3, \frac{1}{4}\right)$
(D) $(-3,4)$
(E) None of these
2. The inverse of the function $f(x)=7 x+8$ will be
(A) $g(x)=\frac{x-8}{7}$
(B) $g(x)=\frac{1}{7 x+8}$
(C) $g(x)=\frac{8}{x-7}$
(D) $g(x)=-7 x-8$
(E) $g(x)=-\frac{1}{7} x+8$
\qquad 3. If $f(x)=\sqrt{x}$ and $g(x)=x^{2}$, then $(g f)(x)=$
(A) $\frac{\sqrt{x}}{x}$
(B) $|x|$
(C) $x^{5 / 2}$
(D) x
(E) $\frac{x}{\sqrt{x}}$
4. If $f(x)=\sqrt{x}$ and $g(x)=x^{2}$, then $(g \circ f)(x)=$
(A) $\frac{\sqrt{x}}{x}$
(B) $|x|$
(C) $x^{5 / 2}$
(D) x
(E) $\frac{x}{\sqrt{x}}$
5. If $f(x)=\sqrt{x}$ and $g(x)=x^{2}$, then $(f \circ g)(x)=$
(A) $\frac{\sqrt{x}}{x}$
(B) $|x|$
(C) $x^{5 / 2}$
(D) x
(E) $\frac{x}{\sqrt{x}}$
6. Suppose f and g are functions with domain of all real numbers. Which of the following is NOT necessarily true?
(A) $(f+g)(x)=(g+f)(x)$
(B) $(f g)(x)=(g f)(x)$
(C) $f(g(x))=g(f(x))$
(D) $(f-g)(x)=-(g-f)(x)$
(E) $(f \circ g)(x)=f(g(x))$
\qquad 7. If $f(x)=x-7$ and $g(x)=\sqrt{4-x}$, what is the domain of $\frac{f}{g}$?
(A) $(-\infty, 4)$
(B) $(-\infty, 4]$
(C) $(4, \infty)$
(D) $[4, \infty)$
(E) $(4,7) \cup(7, \infty)$
\qquad 8. If $f(x)=x^{2}+1$, then $(f \circ f)(x)=$
(A) $2 x^{2}+2$
(B) $2 x^{2}+1$
(C) $x^{4}+1$
(D) $x^{4}+2 x^{2}+1$
(E) $x^{4}+2 x^{2}+2$
\qquad 9. Which of the following relations is equivalent to $y=|x|$?
(A) $y=x$
(B) $y=\sqrt{x^{2}}$
(C) $y^{3}=x^{3}$
(D) $y=(\sqrt{x})^{2}$
(E) $x=|y|$
10. Let $h(x)=\frac{4 x+5}{2 x-7}$ and $f(x)=x+6$. If $h(x)=(g \circ f)(x)$, then $g(x)$ is ??
(A) $\frac{4 x+1}{2 x-13}$
(B) $\frac{4 x-1}{2 x+13}$
(C) $\frac{4 x}{2 x}-\frac{5}{7}$
(D) $\frac{4 x-19}{2 x-5}$
(E) None of these

II. Short Answer

11. If $f(x)=\sqrt{x+3}$ and $g(x)=\sqrt{x-4}$, find formulas for $h=: \frac{f}{g}, \frac{g}{f}, f+g, f \circ g$, and $g \circ f$. Give the domain of each.
12. For each of the following, find $f(g(x))$ and $g(f(x))$. Find the domain of each and decide if f and g are inverses. Give an explanation for your answers.
(a) $f(x)=\frac{1}{x-1}, g(x)=\sqrt{x}$
(b) $f(x)=\frac{1}{x+1}, g(x)=\frac{1}{x-1}$
13. Decompose each of the following functions h into two functions f and g such that $h(x)=f(g(x))$. Find two, different, non-trivial decompositions.
(a) $h(x)=\sqrt{x^{2}-5 x}$
(b) $h(x)=\frac{3}{x^{3}-5 x+6}$
(c) $h(x)=\sqrt{x+e^{\sqrt{x}}}$
14. Assume f is a one-to-one function.
(a) If $f(2)=9$, find $f^{-1}(9)$
(b) If $f^{-1}(-3)=1$, find $f(1)$
(c) if $f(x)=5-2 x$, find $f^{-1}(-3)$
15. Find the inverse, $g(x)$, of the following functions, then compose the functions to verify.
(a) $f(x)=\left(2-x^{3}\right)^{5}$
(b) $f(x)=\frac{2-7 x}{3 x-1}$
16. The following functions are not one-to-one. Restrict each's domain so that the resulting function IS one-to-one. Write an equation for each graph (assume no dilations), then find the equation of the inverse function under the restricted domain.
(a)

(b)

17. Use the graph of each function, f, to sketch the graph of f^{-1}. Assume the scales are square.
(a)

(b)

18. Korpicello's Pizza charges a base price of $\$ 5$ for a large pizza, plus $\$ 2$ for each topping.
a. Write and equation for the total cost, C, of a large pizza with n toppings.
b. Find the equation for $C^{-1}(n)$, the inverse function of $C(n)$.
c. What is practical interpretation (or what is the usefulness) of $C^{-1}(n)$?
d. What are your favorite toppings? If you only had $\$ 10$ to spend, how many, and which, toppings would you/could you get?

