## Chapter 6.4: Other Identities

The first new set of identities is a direct consequence of the sum composite identities.

## Double Angle Identities

$\sin 2 x=2 \sin x \cos x \quad \cos 2 x=\left\{\begin{array}{l}\cos ^{2} x-\sin ^{2} x \\ 2 \cos ^{2} x-1 \\ 1-2 \sin ^{2} x\end{array} \quad \tan 2 x=\frac{\sin 2 x}{\cos 2 x}=\frac{2 \tan x}{1-\tan ^{2} x}\right.$

## Example 1:

Prove the following double-angle identity:

$$
\cos 2 x=2 \cos ^{2} x-1
$$

## Example 2:

If $\cos x=-\frac{2}{3}$ and $\sin x>0$, find $\cos 2 x, \sin 2 x$, and $\tan 2 x$. Verify on calculator.

## Example 3:

Write $\cos 3 x$ in terms of $\cos x$.

The previous example shows that $\cos 3 x$ can be written as a third-degree polynomial in terms of $\cos x$. The identity $\cos 2 x=2 \cos ^{2} x-1$ shows that $\cos 2 x$ can be written as second-degree polynomial in terms of $\cos x$. In general, for any positive integer $n$, we can write $\cos n x$ as an $n$-degree polynomial in tems of $\cos x$. A similar result for $\sin n x$ is not generally true.

When proving an identity in which the anlges on one side are different than those on the other, it should be a priority to get the angles the same by using identities.

## Example 4:

Prove the following identity:

$$
\frac{\sin 3 x}{\sin x \cos x}=4 \cos x-\sec x
$$

In calculus, it is important to be able to write even powers of sine and cosine in terms of single powers of cosine. The following power-reducing identities are derived from the double-angle cosine identities.

## Power-Reducing Identities

$$
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \quad \tan ^{2} x=\frac{1-\cos 2 x}{1+\cos 2 x}
$$

## Example 5:

Express $\sin ^{2} x \cos ^{2} x$ in terms of a single power of cosine.

Solving the power-reducing identites for the individual trig functions allows us to find exact trig values for angles that are half of our Unit Circle angles. Notice the the "price" for reducing the power, is to double the angle.

## Half-Angle Identities

$$
\sin \left(\frac{1}{2} x\right)= \pm \sqrt{\frac{1-\cos x}{2}} \quad \cos \left(\frac{1}{2} x\right)= \pm \sqrt{\frac{1+\cos x}{2}} \quad \tan \left(\frac{1}{2} x\right)= \pm \sqrt{\frac{1-\cos x}{1+\cos x}}
$$

The sign of the radical depends on the quandrant in which the half-angle $\frac{1}{2} x$ terminates.

## Example 6:

Find the exact value of $\sin \frac{\pi}{8}$ and $\cos \frac{7 \pi}{8}$ using the half-angle identites.

## Example 7:

Find $\tan \left(\frac{x}{2}\right)$ if $\sin x=-\frac{2}{5}$ and $x \in\left(\pi, \frac{3 \pi}{2}\right)$.

## Example 8:

Solve algebraically in the interval $[0,2 \pi): \sin 2 x=\cos x$

## Example 9:

Solve: $\sin ^{2} x=2 \sin ^{2}\left(\frac{x}{2}\right)$. Find all solutions in radians.

## Example 10:

Solve the following equations in the interval $x \in[0,2 \pi)$.
(a) $2 \sin 3 x-1=0$
(b) $2 \cos \left(\frac{x}{3}\right)+\sqrt{3}=0$
(c) $\sin 2 x=\sin 4 x$

