Chapter 4.4: Properties of Logs

Remember that logs are exponents. Consequently, the properties of logs are similar to those of exponents.
Property I

$$
x^{a} \cdot x^{b}=x^{a+b} \text { so } \ln (a \cdot b)=\ln a+\ln b
$$

Example 1:

Expand: (a) $\ln (3 \cdot 5)$
(b) $\ln 4 x y$

Condense: (c) $\ln 4 x+\ln 3 x+\ln 2$

Property II

$$
\frac{x^{a}}{x^{b}}=x^{a-b}{ }_{\text {so }} \ln \left(\frac{a}{b}\right)=\ln a-\ln b
$$

Example 2:

Expand: (a) $\ln \left(\frac{4}{3}\right)$
(b) $\ln \left(\frac{7}{6 x}\right)$

Condense: (c) $-\ln 3-\ln x-\ln 5 x$

Property III

$$
\left(x^{a}\right)^{b}=x^{a \cdot b} \text { so } \ln a^{b}=b \cdot \ln a
$$

Example 3:

Expand: (a) $\ln 2^{3}$
(b) $\ln x^{2}$

Condense: (c) $2 \ln x+2 \ln 3-4 \ln y$
(d) $e^{2 \ln x}$

Example 4:

Prove Property II and Property III using the other properties of logs.

Example 5:

Expand in one fell swoop: $\log _{7}\left(\frac{5 x^{2} \sqrt[3]{(2 y-1)^{2}}}{2 y \sqrt{x+1}}\right)$

Example 6:

Condense in multiple fell swoops, then simplify: $-3 \ln 2-\frac{1}{2} \ln x+2 \ln (3 x)+\ln 2 y^{2}$

Example 7:

Use the properties of logs to evaluate the following:
(a) $\log _{4} 2+\log _{4} 32$
(b) $\log _{2} 80-\log _{2} 5$

AVOID THESE COMMON ERRORS WHEN WORKING WITH LOGS

$$
\begin{array}{rlrl}
\log _{b}(x+y) & \neq \log _{b} x+\log _{b} y & \frac{\log _{b} x}{\log _{b} y} & \neq \log _{b}\left(\frac{x}{y}\right) \\
\left(\log _{b} x\right)^{a} & \neq a \log _{b} x & \log _{b} a x^{n} \neq n \log _{b} a x
\end{array}
$$

Example 8:

If $\ln 2 \approx 0.7$, evaluate the following:
(a) $\ln 8$
(b) $\ln \left(\frac{1}{4}\right)$
(c) $\ln \sqrt{2}$
(d) $\log _{4} \sqrt{8}$

Log functions are used to model a variety of situations involving human behavior. One such behavior is how quickly we forget things we have learned. For example, if you learn math at a certain performance level, (say 90% on a test) and then don't use those math skills for a while, how much will you retain after a week, a month, or a year? Hermann Ebbinghaus (1850-1909) studied this phenomenon and formulated logarithmic law to model this.

Example 9:

Ebbinghaus' Law of Forgetting states that if a task is leaned at a performance level P_{0}, then after a time interval t the performance level P satisfies

$$
\log P=\log P_{0}-c \log (t+1)
$$

Where c is a constant that depends on the type of task and t is measured in months.
(a) Solve for P.
(b) If your score on a math test is a 90 , what score would you expect to get on a similar test after two months? After a year? (Assume $c=0.2$)

Example 10:

We can use the change of base formula to write equivalent equations of the same logarithmic graph.
Describe how the graph of $f(x)=\log _{1 / 2} x$ can be transformed to become the graph of $g(x)=\log _{6} x$. Verify on the graphing calculator.

