\qquad
\qquad
TEST: 5.1-5.6A —NO Calculator Permitted
Part I-Multiple Choice: Put the capital letter of the correct answer in the blank beside the question number.

E

 1. What is the period of the following function? $y=2-9 \tan \left(\frac{4 \pi}{7}+\frac{3 \pi}{5} x\right)$(A) $\frac{7}{2}$
(B) $\frac{10}{3}$
(C) $\frac{4}{7}$
(D) $\frac{7}{4}$
(E) $\frac{5}{3}$

$$
P=\frac{\pi}{|\beta|}=\frac{\pi}{\frac{3 \pi}{5}}=\frac{\pi}{1} \cdot \frac{5}{3 \pi}=\frac{5}{3}
$$

2. The function $y=\cot x$ has the same domain as the function
(A) $\sin x$
(B) $\csc x$
(C) $\tan x$
(D) $\sec x$
(E) $\cos x$

$$
\begin{array}{ll}
\cot \theta=\frac{x}{y} & \begin{array}{l}
\text { Both are } \\
\text { undefined }
\end{array} \\
\csc \theta=\frac{r}{y} & \begin{array}{l}
\text { when } y=0 \text { on Unit circle } \\
\text { at } \theta=0, \pi, 2 \pi, \ldots
\end{array}
\end{array}
$$

A
3. If $\sec \theta=-\frac{2 \sqrt{3}}{3}$, then which of the following angles could θ be?
I. $\frac{5 \pi}{6} \sqrt{ } \quad$ if $\sec \theta=-\frac{2 \sqrt{3}}{3}$
II. $\frac{4 \pi}{3} \times$
III. $\frac{13 \pi}{6}$ coterminal with $\frac{\pi}{6}$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
4. Find the domain of $f(x)=-5 \csc \left(\frac{3 \pi}{4} x-\frac{\pi}{3}\right)+1$ for $n \in \mathbb{Z}$.
(A) $\left\{x \left\lvert\, x \neq \frac{4}{9}+\frac{4}{3} n\right.\right\}$
(B) $\left\{x \left\lvert\, x \neq \frac{4}{9}+\frac{2}{3} n\right.\right\}$
(C) $\left\{x \left\lvert\, x \neq \frac{\pi}{3}+\frac{4}{3} n\right.\right\}$
(D) $\left\{x \left\lvert\, x \neq \frac{2}{3}+3 n\right.\right\}$
(E) $\left\{x \left\lvert\, x \neq \frac{10}{9}+\frac{4}{3} n\right.\right\}$
$f(x)=-5 \csc \left(\frac{3 \pi}{4}\left(x-\frac{4}{9}\right)\right)+1 \quad \frac{\pi}{3} \div \frac{3 \pi}{4}$
$P=\frac{2 \pi}{\frac{3 \pi}{4}}=\frac{2 \pi}{1} \cdot \frac{4}{3 \pi}=\frac{8}{3}$
$D_{f}:\left\{x \left\lvert\, x \neq 0+\frac{4}{9}+\frac{4}{3} n\right., n \in \mathbb{Z}\right\} \quad \frac{\pi}{3} \cdot \frac{4}{3 \pi}$
$\frac{1}{2} P=\frac{8}{3} \cdot \frac{1}{2}=\frac{4}{3}$
$x \neq 0+c+\frac{1}{2} P_{m}$
5. What is the range of $y=7-3 \sec (6-2 \pi x)$?
(A) $\{y \mid 4 \leq y \leq 10\}$
(B) $\{y \mid-4 \leq y \leq 10\}$
(C) $\{y \mid y \leq-4$ or $y \geq 10\}$
(D) $\{y \mid y \leq 4$ or $y \geq 10\}$
(E) all reals

$$
\begin{aligned}
& R:(-\infty, D-|A|] \cup[D+|A|, \infty) \\
& R:(-\infty, 7-3] \cup[7+3, \infty) \\
& R:(-\infty, 4] \cup[10, \infty)
\end{aligned}
$$

\qquad 6. For what angle, $0 \leq \theta<2 \pi$, does $\sec \theta=\csc \theta$?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$
(E) No such angle exists

$$
\begin{aligned}
& \sec \left(\frac{\pi}{4}\right)=\sqrt{2}=\csc \left(\frac{\pi}{4}\right) \\
& \sec \left(\frac{5 \pi}{4}\right)=-\sqrt{2}=\csc \left(\frac{5 \pi}{4}\right)
\end{aligned}
$$

E 7. If $\sin \pi=A, \tan A=B$, then what is $\cot B=$
(A) 0
(B) 1
(C) $\frac{\sqrt{2}}{2}$
(D) $\frac{\pi}{4}$
(E) ONE

$$
\begin{array}{r}
\sin \pi=0 \\
s_{0}, A=0
\end{array}\left\{\begin{array}{c}
\tan A=\tan 0=0 \\
\operatorname{so}, B=0
\end{array}\right\} \begin{gathered}
\cot B=\cot 0 \\
=D N E
\end{gathered}
$$

D
8. For which of the following functions does $f(-x)=f(x)$?
I. $f(x)=\cos x$
II. $f(x)=\sec x$
III. $f(x)=\cot x \quad X$

EVEN function
with y-axis
symmetry
$\cos x \& \sec x$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only

9. Find the domain of $f(x)=3 \tan \left(\frac{\pi}{4}+4 \pi x\right)+5$ for $n \in \mathbb{Z}$.
(A) $\left\{x \left\lvert\, x \neq \frac{1}{16}+\frac{1}{2} n\right.\right\}$
(B) $\left\{x \left\lvert\, x \neq \frac{3}{16}+\frac{1}{4} n\right.\right\}$
(C) $\left\{x \left\lvert\, x \neq \frac{1}{16}+\frac{1}{4} n\right.\right\}$
(D) $\left\{x \left\lvert\, x \neq \frac{3}{16}+\frac{1}{2} n\right.\right\}$
(E) all reals

$$
\begin{gathered}
f(x)=3 \tan \left(4 \pi x+\frac{\pi}{4}\right)+5 \quad p=\frac{\pi}{4 \pi}=\frac{1}{4} \\
f(x)=3 \tan \left(4 \pi\left(x+\frac{1}{16}\right)\right)+5 \quad \frac{1}{2} p=\frac{1}{8} \\
D_{f}:\left\{x \left\lvert\, x \neq \frac{1}{8}-\frac{1}{16}+\frac{1}{4} n\right., n \in \mathbb{Z}\right\} \\
D_{f}:\left\{x \left\lvert\, x \neq \frac{1}{16}+\frac{1}{4} n\right., n \in \mathbb{Z}\right\} \\
x \neq \frac{1}{2} p+C+P_{n}, n \in \mathbb{Z}
\end{gathered}
$$

Part II—Short Answer: Using correct notation, and giving simplified, exact answers, for each of the following,
10. $f(x)=-9+2 \sec \left(\frac{\pi x}{2}-\pi\right)$
(a) Put $f(x)$ into standard transformation form. ELIMINATE ANY NEGATIVE B VALUE BY USING THE SYMMETRY OF THE FUNCTION!!!

$$
\begin{equation*}
f(x)=2 \sec \left(\frac{\pi}{2}(x-2)\right)-9 \tag{1}
\end{equation*}
$$

(b) Find the Period, P, of $f(x)$.

$$
P=\frac{2 \pi}{\pi / 2}=4
$$

(c) Find the Range, R, of $f(x)$.

$$
\begin{aligned}
& R_{f}:(-\infty,-\|] \cup[-7, \infty)(\sqrt{3}) \\
& \text { or }_{f}:\{y \mid y \leq-11 \text { or } y \geq-7\}
\end{aligned}
$$

(d) Find the Domain, D, of $f(x)$.

$$
\begin{array}{ll}
f(x)=2 \sec \left(\frac{\pi}{2}(x-2)\right)-9 & \frac{1}{4} p=1 \\
D_{f}:\{x \mid x \neq 1+2+2 n, n \in \mathbb{Z}\} & \frac{1}{2} p=2 \\
D_{f}:\{x \mid x \neq \underbrace{3}_{(\sqrt{4})}+\underbrace{2 n}_{(\sqrt{5})}, n \in \mathbb{Z}\} &
\end{array}
$$

11. $g(x)=5 \cot \left(\frac{5}{2}-\frac{5 \pi}{3} x\right)-8$
(a) Put $g(x)$ into standard transformation form. ELIMINATE ANY NEGATIVE B VALUE BY USING THE SYMMETRY OF THE FUNCTION!!!

$$
\begin{aligned}
& g(x)=5 \cot \left(-\frac{5 \pi}{3} x+\frac{5}{2}\right)-8 \\
& g(x)=5 \cot \left(-\frac{5 \pi}{3}\left(x-\frac{3}{2 \pi}\right)\right)-8 \\
& g(x)=-5 \cot \left(\frac{5 \pi}{3}\left(x-\frac{3}{2 \pi}\right)\right)-8
\end{aligned}
$$

$$
\frac{5}{2} \div \frac{5 \pi}{3}
$$

$$
\frac{5}{2} \cdot \frac{3}{5 \pi}
$$

$$
\frac{3}{2 \pi}
$$

(b) Find the Period, P, of $g(x)$.

$$
P=\frac{\pi}{\frac{5 \pi}{3}}=\frac{\pi}{1} \cdot \frac{3}{5 \pi}=\frac{3}{5} \sqrt{7}
$$

(c) Find the Range, R, of $g(x)$.

(d) Find the Domain, D, of $g(x)$.

$$
\begin{aligned}
& f(x)=-5 \cot \left(\frac{5 \pi}{3}\left(x-\frac{3}{2 \pi} \pi\right)-8\right. \\
& D_{g}:\left\{x \left\lvert\, x \neq 0+\frac{3}{2 \pi}+\frac{3}{3} n\right., n \in Z\right\} \\
& D_{g}:\{x \left\lvert\, x \neq \underbrace{\frac{3}{2 \pi}}_{(\sqrt{n})}+\underbrace{\frac{3}{2} n}_{(1 / 0)}\right., n \in \mathbb{Z} \xi
\end{aligned}
$$

