\qquad Period \qquad
TEST: Chapter 4.1 Form A CALCULATOR PERMITTED
I. Multiple Choice: Place the capital letter of the answer choice in the blank to the left of the number.

A

1. The graph of the function $g(x)=27^{x}$ can be obtained from the graph of $f(x)=3^{x}$ by
(A) Horizontally compressing f by a factor of 3
(B) Horizontally stretching f by a factor of 3
(C) Vertically compressing f by a factor of 3
(D) Vertically stretching f by a factor of 3
(E) None of these

$$
\begin{aligned}
\text { Start: } f(x)=3^{x} \text { End: } \begin{aligned}
g(x) & =27^{4} \\
g(x) & =\left(3^{3}\right)^{x} \\
& =3^{34}
\end{aligned} \text { (t) None }
\end{aligned}
$$

So, Horizontally compress

$$
f(x)=3^{x} \text { of o } 3 \text { to obtain }
$$

A
2. Find the range of $f(x)=-3 e^{4-5 x}-10$
(A) $(-\infty,-10)$
(B) $[-10, \infty)$
(C) $(-\infty,-10]$
(D) $(10, \infty)$
(E) $(-10, \infty)$
$A=-3$, so, graph lives BELow the HA
$D=-10$, so, HAE $y=-10$
So, the range is $y<-10 \quad \begin{aligned} & R_{f}:\{y \mid y<-10\} \text { or }(-\infty,-10)\end{aligned}$

A3. Given a parent function $y=e^{x}$, which of the following equations represents a horizontal shift of the parent function 3 units right?

$$
\begin{aligned}
& \text { (A) } f(x)=3 e^{-2(x+6)}+3 \\
& \text { (B) } f(x)=e^{\underset{2 x+6}{2(x+3)}} \stackrel{\underbrace{\text { Left }}_{3}}{\underbrace{}_{3}} \\
& \text { (D) } f(x)=3 e^{-2\left(x-\frac{3}{2}\right)}+3^{-2 x+3}+3 \text { (E) } f(x)=3 e^{-2 x+3}+3^{-2\left(x+\frac{3}{2}\right)} \text { Left } \frac{3}{2}
\end{aligned}
$$

(1).
4. If $f(x)=2+\frac{2}{3} e^{\left(\frac{2}{3} x-\frac{5}{3}\right)}$, then compared to the parent function $y=e^{x}$, the graph of f is
(A) Vertically stretched by a factor of $\frac{3}{2}$
(B) Vertically stretched by a factor of $\frac{2}{3}$
(C) Horizontally compressed by a factor of $\frac{3}{2}$
(D) Horizontally stretched by a factor of $\frac{3}{2}$

Hor z stretch bf $\frac{3}{2}$ (E) Horizontally stretched by a factor of $\frac{2}{3}$

$$
f(x)=\frac{2}{3} e^{\frac{2}{3}\left(x-\frac{15}{6}\right)} \quad \begin{array}{ll}
-\frac{5}{3} \div \frac{2}{3} \\
4 & -\frac{5}{3} \cdot \frac{3}{2} \\
\frac{-15}{6}
\end{array}
$$

Vert comp bfo $\frac{3}{2}$

C 5. If $f(x)=3+\frac{1}{5}(1.001)^{\frac{x}{5}}$, what is $\lim _{x \rightarrow-\infty} f(x)$?
(A) 0
(B) $\frac{1}{5}$
(C) 3
(D) ∞
(E) $-\infty$

E
6. An exponential function of the form $y=A \cdot b^{x}$ passes through the points $(0,2)$ and $(3,10)$. What is the y-value when $x=6$?

$$
\begin{aligned}
& \text { (A) } 70 \\
& \text { (B) } 60 \\
& \text { (C) } 30 \\
& \text { (D) } 40 \\
& \text { (E) } 50 \\
& (0,2) \text { is } y \text {-int, so } A=2 \\
& \begin{array}{c}
y=2 \cdot b^{x} \\
\partial(3,10): 10=2 \cdot b^{3}
\end{array} \\
& 5=b^{3} \\
& (5)^{1 / 3}=\left(b^{3}\right)^{1 / 3} \\
& b=(5)^{1 / 3} \\
& \text { So, } y=2 \cdot\left(5^{1 / 3}\right)^{x} \\
& y=2 \cdot 5^{\frac{1}{3} x} \\
& a+x=6: \quad y=2 \cdot 5^{\left(\frac{1}{3} \cdot 6\right)} \\
& \begin{array}{l}
=2 \cdot 5^{2} \\
=2 \cdot 25=50
\end{array}
\end{aligned}
$$

B 7 Which of the following is not true of the function $f(x)=3\left(\frac{1}{2}\right)^{x-1}+4$
$\begin{array}{lll}\text { (A) Horizontal asymptote @ } & y=4 & \text { (B) } y \text {-intercept } @(0,3) \text { at }(0,10)\end{array}$
(C) It is a decreasing function $\sqrt{ }$
(D) $R:(4, \infty)$
(E) $D: \mathbb{R}$
8. When $2 x^{13}-3 x^{4}+5$ is divided by $x+1$, the remainder is what?
(A) 0
(B) 4
(C) 6
(D) 10
(E) 11

Let $f(x)=2 x^{13}-3 x^{4}+5$
Since $x+1$ is the divisor
$x=-1$ is the root of the divisor.
the remainder, then, when
divided by $x+1$ is $f(-1)=2(-1)^{13}-3(-1)^{4}+5$

$$
\begin{aligned}
& =2(-1)-3(1)+5 \\
& =-2-3+5 \\
& =-5+5 \\
& =0
\end{aligned}
$$

* So, $x+1$ is actually a factor of $f(x)!!!$

9. For $x>0$, which of the following is true?

(B) $7^{x}>5^{x}$

x^{x} (C) $\left(\frac{1}{6}\right)^{x}>\left(\frac{1}{2}\right)^{x}$

Form B

(1) $E M A$	$(4) C$	
$(2) C$	5	(8)
(3) B	$(6) E$	

(D) $9^{-x}>8^{-x}$
(E) $0.17^{x}>0.32^{x}$

Form
$\overline{1} D{ }^{\circ} \mathrm{B}$
(2) $B E$
(3) A (6) C
(9) A
II. Free Response: Show all work in the space provided below the horizontal line. Use correct units where appropriate.
10. The number of people at Wassailfest infected with holiday cheer after t minutes is modeled by the function

$$
W(t)=\frac{12456}{1+56 e^{-0.7 t}}
$$

(a) What was the initial number of Wassailers infected with cheer? (round to the nearest person)

$$
\begin{aligned}
& W(0)=218.5263 \approx 218 \text { or wassailers units are } 1 \text { check } \\
& \qquad \begin{array}{l}
\text { if they are correct on } \\
\text { every expressed answer } \\
\text { people }
\end{array} \\
& \text { * answer must be in presence of } W(0) \text { or } \frac{12456}{1+56 e^{-0.7(0)}}
\end{aligned}
$$

(b) After how many minutes will the number of infected Wassailers be 5000? Give an approximation rounded to the nearest minute.

$$
t=5.1796 \approx 5 \text { minutes units }
$$

(c) After how many minutes is the holiday cheer spreading at the fastest rate? (round to the nearest minute

$$
\begin{aligned}
\text { when } W(t) & =\frac{12456}{2} \\
W(t)= & =6228 \\
t & =5.7505
\end{aligned}
$$

(d) How many Wassailers are infected after a 15 minutes? (round to the nearest person)

(e) According the model, how many people attended Wassailfest?

$$
\lim _{t \rightarrow \infty} w(t)=12456 \text { wassailers } \begin{aligned}
& \text { units } \\
& \text { people }
\end{aligned}
$$

(f) If the Grinch has a plan to crash the Wassailfest festivities if 75% of the Wassailers get infected with the holiday spirit, after how many minutes will he try to implement his sinister plan? (round to the nearest minute)

$$
\begin{aligned}
W(t) & =(0.75)(12456) \\
W & \\
W(t) & =9342(\sqrt{88} \\
t & =7.31994 \approx 7 \text { units utes units check }
\end{aligned}
$$

