\qquad Date \qquad
\qquad

AP Calculus TEST 4.1-5.1, No Calculator

Section 1: Multiple Choice-You know what to do

1. $\int\left(x^{2}-2\right)^{2} d x=$
(A) $\left(\frac{x^{3}}{3}-2 x\right)^{2}+C$
(B) $\frac{\left(x^{2}-2\right)^{3}}{6 x}+C$
(C) $\frac{x^{5}}{5}-\frac{4 x^{3}}{3}+4 x+C$
(D) $\frac{2 x}{3}\left(x^{2}-2\right)^{3}+C$
(E) $\left(\frac{x^{2}-2}{3}\right)^{3}+C$
___ 2. At each point (x, y) on a curve, $\frac{d^{2} y}{d x^{2}}=6 x$. Additionally, the line $y=6 x+4$ is tangent to the curve at $x=-2$. Which of the following is an equation of the curve that satisfies these conditions?
(A) $y=6 x^{2}-32$
(B) $y=x^{3}-6 x-12$
(C) $y=2 x^{3}-3 x$
(D) $y=x^{3}-6 x+12$
(E) $y=2 x^{3}+3 x-12$
\qquad 3. $\int \frac{\sin 2 x}{\cos x} d x=$
(A) $-2 \cos x+C$
(B) $2 \cos x+C$
(C) $-\cos 2 x+C$
(D) $\cos x+C$
(E) $\cos 2 x+C$
\qquad 4. $\int \tan ^{2} x d x=$
(A) $\tan x+x+C$
(B) $\sec x+x+C$
(C) $\sec x-x+C$
(D) $\tan x-x+C$
(E) $\tan x+C$
2. $\int \frac{2 x^{2}}{\sqrt{x^{3}+3}} d x=$
(A) $\frac{2}{3} \sqrt{x^{3}+3}+C$
(B) $\frac{4}{3 \sqrt{x^{2}+3}}+C$
(C) $\frac{4}{3} \sqrt{x^{3}+3}+C$
(D) $\frac{1}{3} \sqrt{x^{3}+3}+C$
(E) $\frac{3}{4} \sqrt{x^{3}+3}+C$
\qquad 6. $\int x \sqrt{x-1} d x=$
(A) $\frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C$
(B) $\frac{1}{2}(x-1)^{4}+C$
(C) $\frac{5}{2}(x-1)^{5 / 2}+\frac{3}{2}(x-1)^{3 / 2}+C$
(D) $\frac{1}{3} x^{2}(x-1)^{3 / 2}+C$
(E) $\frac{2}{3}\left(x^{2}-x\right)^{3 / 2}+C$
\qquad 7. $\int \tan ^{3} x \cdot \sec ^{2} x d x=$
(A) $\frac{1}{2} \tan ^{2} x+C$
(B) $\frac{1}{4} \tan ^{4} x+C$
(C) $\frac{1}{2} \sec ^{2} x+C$
(D) $\frac{\sec ^{3} x \cdot \tan ^{4} x}{12}+C$
(E) $4 \tan ^{4} x+C$
\qquad 8. What is the average value of $\cos x$ on the closed interval $\left[0, \frac{\pi}{2}\right]$?
(A) $\frac{1}{2}$
(B) $\frac{\pi}{4}$
(C) $\frac{1}{2 \pi}$
(D) $\frac{2}{\pi}$
(E) $\frac{\pi}{2}$
9. $\frac{d}{d x}\left[\int{2 x}^{x^{2}} \cos ^{2} t d t\right]=$
(A) $2 x\left[\cos ^{2}\left(x^{2}\right)-\cos ^{2}(2 x)\right]$
(B) $\cos ^{2}\left(x^{2}\right)$
(C) $2 x^{2} \cos ^{2}\left(x^{2}\right)$
(D) $2\left[x \cos ^{2}\left(x^{2}\right)-\cos ^{2}(2 x)\right]$
(E) $\cos ^{2}\left(x^{2}\right)-\cos ^{2}(2 x)$

Part II: Free Response—Do and show all work in the space provided. Have fun!
10.

At time $t=0$, a boiled potato is take from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(a) Write an equation for the line tangent to the graph of H at $t=0$. Use this equation to approximate the internal temperature of the potato at time $t=3$.
(b) Use $\frac{d^{2} H}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time $t=3$.
(c) For $t<10$, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{d G}{d t}=-(G-27)^{2 / 3}$, where $G(t)$ is measured in degrees Celsius and $G(0)=91$. Find an expression for $G(t)$. Based on this model, what is the internal temperature of the potato at time $t=3$?

