PART I: Multiple Choice. Put the Capital Letter of the correct answer choice in the space to the left of each problem number.

1. Freudian Pizza Parlor sells a soda for $\$ 1.40$ and a slice of Freudian pizza for $\$ 2.50$. In any given week, they sell 500 sodas and 1,000 slices of pizza. The proprietors of the parlor determine that for every dime they increase the price of a pizza slice, they will sell 10 fewer sodas and 20 fewer slices. At what price should they sell their pizza slice if they wish to maximize their revenue?
(A) $\$ 4.80$
(B) $\$ 3.60$
(C) $\$ 3.40$
(D) $\$ 3.00$
(E) $\$ 2.75$

Let $n=\#$ of Dime increases to pizza price
$R=(1.40)(500-10 n)+(2.50+0.10 n)(1000-20 n)$
$R=700-14 x+2500-50 x+100 x-2 x^{2}$
$R=-2 x^{2}+36 x+3200$

$$
\begin{aligned}
& R^{\prime}(n)=-4 n+36=0 \\
& n=9 \\
& \text { * so they should raise the } \\
& \text { price of a pizza slice } \\
& 9 \text { dimes, or } 90 \$ \text {, from } \\
& \$ 2.50 / \text { slice to } \$ 3.40 / \text { slice }
\end{aligned}
$$

D
2. The graph of $f(x)$ is shown above. Which of the following must be true?
I. $\int_{-6}^{-2} f(x) d x=\int_{2}^{6} f(x) d x-6=-6$
II. $\int_{-2}^{2} f(x) d x=\int_{6}^{2} f(x) d x \quad 6=6$
III. $\int_{0}^{1} f(x) d x=\int_{-2}^{-6} f(x) d x+\int_{1}^{2} f(x) d x \quad 2=6+1,2 \neq 7$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
D
3. If $\int_{-1}^{5} g(x) d x=11$ and $\int_{5}^{1} g(x) d x=-8$, what is $\int_{-1}^{1} g(x) d x$?
(A) -6
(B) 19
(C) -19
(D) 3
(E) -3

$$
\int_{-1}^{1} g(x) d x=\int_{-1}^{5} g(x) d x+\int_{5}^{1} g(x) d x=11+-8=3
$$

A4. Estimations for $\int_{0}^{3}\left(30-x^{3}\right) d x$ are calculated using a left $\operatorname{Riemann} \operatorname{sum}(L)$, a right $\operatorname{Riemann} \operatorname{sum}(R)$, and using trapezoids (T), each using 4 subintervals of equal width. Which of the following lists the estimations from least to greatest?
(A) $R<T<L$
(B) $R<L<T$
(C) $T<L<R$
(D) $L<R<T$
(E) $L<T<R$ $y=30-x^{3}$
 $R<T<L$
5. The function $h(x)$ is continuous on the interval $[-4,12]$. Selected values of x and $f(x)$ are given in the table below. If $\int_{-4}^{12} f(x) d x$ is estimated using a right Riemann sum with 4 equal subintervals, a left Riemann sum with 4 equal subintervals, trapezoids with 4 equal subintervals, and a midpoint Riemann sum with 2 equal subintervals, what is the difference between the largestand smallest estimation?

(A) 68
(B) 32
(C) 24
(D) 16
(E) 8
$R_{4}=4[9-2-6-3]=-8$
$24-(-8)=32$
$L_{4}=4[3+9-2-6]=16$
$T_{4}=\frac{5}{2}(4)[3+2(9)+2(-2)+2(-6)-3]=4$
$M_{2}=8[9-6]=24$
$b-4$ inch

6. A trapezoid is pictured above. It has a base, a, that is a constant 10 inches while its top base, b, is increasing at a rate of 3 inches per minute while its height, h, is decreasing at a rate of $\frac{1}{2}$ inches per minute. When the top base is 4 inches and the height is 3 inches, how fast, in square inches per minute,
is the area of the trapezoid changing?
$\frac{d b}{d t}=3$
(A) 8
(B) 2

(D) $-\frac{3}{4}$
(E) $-\frac{5}{2} \frac{d A}{d t}=\frac{1}{2}(10+b) h$
when $\left[\frac{d 6}{d t} h+(10+b) \frac{d h}{d t}\right]$
$b=4: \frac{1}{d t}\left[(3)(3)+(10+4)\left(-\frac{1}{2}\right)\right]$
$=\frac{1}{2}[9-7]=1$ in $^{2} / \mathrm{min}$
7. Kool-Aid is draining from a conical tank whose base angle is 60° as shown in the figure at the right. When the height of the Kool-Aid is 3 feet, its height is decreasing at 6 inches per hour. At this moment, how fast, in cubic feet per hour, is the volume of the Kool-Aid decreasing?
(A) 162π
(B) 18π
(C) $\frac{13 \pi}{2}$
(D) $\frac{3 \pi}{2}$
(E) 3π

$$
\begin{aligned}
& h=3 \\
& h=3 \\
& r=\frac{3}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d h}{d t}=-6 \mathrm{in} / \mathrm{hr} \\
& V=-\frac{1}{2} r^{2} h / h r \\
& V=\frac{\pi}{3}\left(\frac{1}{\sqrt{3} h}\right)^{2} h \\
& V=\frac{\pi}{9} h^{3} \\
& \frac{d V}{d t}=\frac{\pi}{3} h^{2} \frac{d h}{d t}
\end{aligned}
$$

8. $\int \frac{\pi}{x^{e}} d x=$
(A) $\frac{\pi x^{1-e}}{1-e}+C$
(B) $\frac{\pi}{(e+1) x^{e+1}}+C$
(C) $\frac{\pi}{x^{e+1}}+C$
(D) $\pi x^{1-e}+C$
(D) $\frac{\pi x^{e+1}}{e+1}+C$

$$
\begin{aligned}
& \pi \int x^{-e} d x \\
& \pi\left[\frac{x^{-e+1}}{-e+1}\right]=\frac{\pi \cdot x^{1-e}}{1-e}
\end{aligned}
$$

B
9. Use a tangent line approximation for $g(x)=\sqrt{x}$ at $x=64$ to estimate $\sqrt{65}-\sqrt{63}$.
$A \sqrt{65}-\sqrt{63}$
(A) $\frac{1}{4}$
(B) $\frac{1}{8}$
(C) $\frac{1}{16}$
(D) $\frac{1}{32}$
(E) 0

$$
=0.1250038151
$$

$$
\sqrt{65} \approx \mathcal{L}(65)=8+\frac{1}{16}
$$

$\& \frac{1}{8}=0.125$
(Dar unclose!)

$$
\begin{aligned}
& g(64)=8, p+:(64,8) \\
& g^{\prime}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \\
& g^{\prime}(64)=\frac{1}{16}=m \\
& f(x)=8+\frac{1}{16}(x-64)
\end{aligned}
$$

$$
\sqrt{63} \approx \mathcal{L}(63)=8-\frac{1}{16}
$$

$$
\begin{aligned}
\sqrt{65}-\sqrt{63} & \approx\left[8+\frac{1}{16}\right]-\left[8-\frac{1}{16}\right] \\
& =\frac{2}{16} \\
& =\frac{1}{8}
\end{aligned}
$$

(A) $\frac{(\sqrt{x}-1)^{3}}{3 \sqrt{x}}+C$
(B) $\frac{(\sqrt{x}-1)^{3}}{3}+C$
(C) $\frac{2}{3} x^{3 / 2}+2 x^{1 / 2}+C$
(D) $\frac{1}{2} x^{1 / 2}-\frac{4}{3} x+x^{1 / 2}+C$
(E) $\frac{2}{3} x^{3 / 2}-2 x+2 x^{1 / 2}+C$

$$
\begin{aligned}
& \int\left(\frac{x-2 \sqrt{x}+1}{\sqrt{x}}\right) d x \\
& \int\left(\frac{x}{x^{1 / 2}}-\frac{2 \sqrt{x}}{\sqrt{x}}+\frac{1}{x^{1 / 2}}\right) d x
\end{aligned}
$$

11．I was out collecting data yesterday and used it to approximate a differentiable function $y=f(x)$ represented in the table below．

\ldots use my data to approximate $\int_{0}^{16} f(x) d x$ using the following methods using the given number of subintervals， n ．（simplify your answers）：
（a）Left end－point Riemann Sums $(n=6)$ ．
$I \approx L_{6}=4(30)+4(6)+3(1)+3(2)+1(0)+1(-1)$

$$
=152 \sqrt{12}
$$

（b）Right end－point Riemann Sums $(n=6)$

$$
\begin{aligned}
I \approx R_{6} & =4(6)+4(1)+3(2)+3(0)+1(-1)+1(0) \\
& =33 \sqrt{4}
\end{aligned}
$$

（c）Midpoint Riemann Sums $(n=3)$

$$
\begin{aligned}
I \approx M_{3} & =8(6)+6(2)+2(-1) \sqrt{5} \\
& =58(\sqrt{6})
\end{aligned}
$$

（d）Trapezoidal Rule（ $n=6$ ）
$I \approx \frac{L_{6}+R_{6}}{2}=\frac{152+33}{2}=92.5(\sqrt{7}$
$I \approx \frac{1}{2}[4(30+6)+4(6+1)+3(1+2)+3(2+0)+1(0+-1)+1(-1+0)]=92.5$
（e）Can any of the above calculations represent the approximate area under the function $y=f(x)$ on $[0,16]$ ？ Why or why not？

No，since $f(15)<0$ and 8 保 there may be more negative y－value son the interval that are not listed in the table
and
（f）Approximate $f^{\prime}(12)$ from the table of values．Make sure to show your difference quotient．

$$
f^{\prime}(12) \approx \frac{0-2}{14-11}=\frac{-2}{3} \quad \sqrt{9}
$$

（g）If the secant line on the interval $[11,14]$ was used to approximate $f(12)$ ，given that $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$ for all $x \in(11,14)$ ，would this approximation of $f(12)$ be an over or under approximation？ coxcavedowh
Explain why．．

