\qquad
\qquad
AP Calculus AB/BC, TEST: 5.1 to 5.8

1. The second derivative of a function f is given by $f^{\prime \prime}(x)=x(x-a)(x-b)^{2}$. The graph of $f^{\prime \prime}$ is shown at right. For what values of x does the graph of f have a point of inflection?
(A) 0 and a only
(B) 0 and m only
(C) j and b only
(D) $0, a$, and b
(E) j, b, and k

2. Determine of the function $f(x)=x \sqrt{6-x}$ satisfies the hypothesis of the MVT on the interval $[0,6]$, and if it does, find all numbers c satisfying the conclusion of that theorem.
(A) $c=5$
(B) $c=4$
(C) $c=3$
(D) $c=2,3$
(E) $c=4,5$
(F) hypothesis not satisfied
3. Let f be the function given by $f(x)=2 x e^{x}$. The graph of f is concave down when
(A) $x>-2$
(B) $x<-1$
(C) $x>-1$
(D) $x<0$
(E) $x<-2$

4. The function f is twice differentiable with $f(2)=1, f^{\prime}(2)=4$, and $f^{\prime \prime}(2)=3$. What is the value of the approximation of $f(1.9)$ using the line tangent to the graph of f at $x=2$?
(A) 1.4
(B) 1.3
(C) 0.7
(D) 0.6
(E) 0.4
5. A baseball diamond is a square with side 90 feet. If a batter hits the ball and runs towards first base with a speed of $25 \mathrm{ft} / \mathrm{sec}$, at what speed is his distance from second base decreasing when he is two thirds of the way to first base?
(A) $2 \sqrt{10} \mathrm{ft} / \mathrm{sec}$
(B) $3 \sqrt{5} \mathrm{ft} / \mathrm{sec}$
(C) $\frac{5}{2} \sqrt{10} \mathrm{ft} / \mathrm{sec}$
(D) $\frac{3}{2} \sqrt{10} \mathrm{ft} / \mathrm{sec}$
(E) $4 \sqrt{5} \mathrm{ft} / \mathrm{sec}$
6. Find the values of x at which the graph of $y=x^{2}-4 \cos x$ changes concavity on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(A) $x=\frac{\pi}{3}$
(B) $x=-\frac{\pi}{3}$
(C) $x=-\frac{\pi}{3}, \frac{\pi}{3}$
(D) $x=-\frac{\pi}{6}, \frac{\pi}{6}$
(E) $x=\frac{\pi}{6}$
(F) $x=-\frac{\pi}{6}$
(G) there are no values of x
7. Let f be the function with derivative given by $f^{\prime}(x)=2 x^{2}-15 x+25$. How many local extrema does f have on the interval $2<x<4$?
(A) Five
(B) Four
(C) Three
(D) Two
(E) One
8. A right circular cylinder is inscribed in a sphere with diameter 4 cm as shown.

If the cylinder is open at both ends, find the largest possible surface area of the cylinder.
(A) $A=8 \pi \mathrm{~cm}^{2}$
(B) $A=8 \mathrm{~cm}^{2}$
(C) $A=16 \mathrm{~cm}^{2}$
(D) $A=16 \pi \mathrm{~cm}^{2}$
(E) $A=2 \mathrm{~cm}^{2}$

Part II: Free Response. Do all work below the line. Label each part. Notation, Notation, Notation. Include units in ALL of your final answers.
9. Coffee is draining from a conical filter into a cylindrical
(1) A
(2) B
(3) E
(4) D coffeepot at the rate of $8 \mathrm{in}^{3} / \mathrm{min}$. The dimensions of the filter and coffeepot are indicated in the diagram at right.
Note: $6^{\prime \prime}=6$ inches .
(a) Using similar triangles, find an equation relating the height, \boldsymbol{h}, of the coffee in the cone in terms of the radius, \boldsymbol{r}, of the coffee in the cone.
(6) G
(7) E
(8) A
(b) Write a simplified equation for the volume, \boldsymbol{V}, of the coffee in the cone in terms of the height, \boldsymbol{h}, of coffee in the cone. (get rid of the r variable!)
(c) How much coffee, in cubic inches, is in the cone when the coffee in the cone is 4 inches deep?
(d) How fast is the level, \boldsymbol{h}, in the cone falling when the coffee in the cone is 4 inches deep?
(e) How fast is the depth level, \boldsymbol{y}, in the pot rising when the coffee in the cone is 4 inches deep?
(f) Do you prefer hot coffee or iced coffee? Precalculus or Calculus?

