\qquad Date \qquad
\qquad
TEST: 3.1-3.6, NO CALCULATOR
Part I: Multiple Choice: Put the letter in the letter place.

1. The graph of the derivative, $g^{\prime}(x)$, of a function $g(x)$ is shown below

Which of the following must be true about the function $g(x)$ on the interval $[-4,4]$?
I. $g(x)$ is increasing for $x>2$ only \checkmark since $g^{\prime}>0$ on $(2,4]$
II. $g(x)$ is not differentiable at four points X (true of g^{\prime}, not g)
III. $g(x)$ is concave down for $-2<x<1 \checkmark$ since slopes of g^{\prime} are neg on $(-2,1)$
(A) I, II, and III
(B) I only
(C) I and III only
(D) I and II only
(E) II only

2. On what open intervals is $f(x)=\frac{2 x-3}{x^{2}}$ increasing?, $x \neq 0$ (f hos VA ex =0)
(A) $(3, \infty)$
(B) $(0, \infty)$
(C) $(-\infty, 3)$
(D) $(0,3)$
(E) $(-\infty,-3)$ $f^{\prime}=\frac{x^{2}(2)-(2 x-3)(2 x)}{\left(x^{2}\right)^{2}}$

$$
f^{\prime}=\frac{2 x[x-2 x+3]}{x^{4}}
$$

$$
\begin{aligned}
& f^{\prime}=0 \\
& x=3 \\
& \hline \text { VAC }=0
\end{aligned}
$$

$$
\begin{array}{l|l:l}
x & 0 & 1 \\
\hline f^{\prime} & -\vdots & +1 \\
\text { fin inc on }(0,3), \\
\text { since } f^{\prime}>0 \text { on }(0,3)
\end{array}
$$

A
3. If $\lim _{h \rightarrow 0} \frac{f(-3+h)-f(-3)}{h}=2.718$, then the graph of $f(x)$ at $x=-3$ is
(A) increasing
(B) concave up
(C) decreasing
(D) stationary
(E) concave down

1) limit def of $f^{\prime}(-3)$ (modified form)

So, $f^{\prime}(-3)=2.718>0$,
So, f is increasing at $x=-3$
B
4. On the interval $[0, \pi]$, the graph of $f(x)=\frac{1}{2} x+\sin x$ has a critical value at $x=$ $D_{f}: \mathbb{R}$
(A) π
(B) $\frac{2 \pi}{3}$
(C) $\frac{5 \pi}{6}$
(D) 0
(E) $\frac{\pi}{3}$

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{2}+\cos x=0 \\
\cos x=-\frac{1}{2} \quad \pi x \\
x=\frac{2 \pi}{3}
\end{gathered}
$$

5. The graph of the derivative, $f^{\prime}(x)$, of a function $f(x)$ is shown below

At what value of x does $f(x)$ have a local maximum?
(A) -2
(B) -1
(C) 3
(D) 1
(E) 0
 f has a local max at $x=-2$,
cvs: $X=-2,1$ since f^{\prime} changes from pos to neg at $x=-2$.

D
6. Selected values for the derivative, $f^{\prime}(x)$, of a differentiable function $f(x)$ are shown in the table below.

x	1	2	3	4	5	6
$f^{\prime}(x)$	8	4	0	-4	-8	-12

If $\overparen{f^{\prime}(x)}$ is strictly decreasing, which of the following statements must be true?
(A) The graph of $f(x)$ is symmetric with respect to the line $x=3$ (Not necessarily, missing y-values)
(B) $f(x)$ is concave up for for all $x, c c$ down, r ot $c c$ up
(C) $f(x)$ changes concavity at $x=3$, Not necessarily, no info immediately on either side of $x=3$
(D) $f(x)$ has a relative maximum at $x=3>$
(彗) $f(x)$ has a relative minimum at $x=3$
since $f^{\prime}(3)=0, x=3$ is a critical value of $f(x)$.
since $f^{\prime \prime}(3)<O(\forall x)$, by Ind Deriv Test, (I) f has a local/rel max at $x=3$.
7. The function g is defined by the equation $g(x)=6 x^{5}-10 x^{3}$. On what open intervals is the graph of $g(x)$ concave up? HINT: $\frac{\sqrt{2}}{2} \approx 0.707 \quad \begin{aligned} & g^{\prime}(x)=30 x^{4}-30 x^{2} \\ & g^{\prime \prime}(x)=120 x^{3}-60 x \\ & g^{\prime \prime}(x)=60 x\left(2 x^{2}-1\right)\end{aligned}\left\{\begin{array}{l}g^{\prime \prime}(x)=0 \\ x=0, x= \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2} \approx \pm 0.707\end{array}\right.$
(A) $\left(-\infty,-\frac{\sqrt{2}}{2}\right) \cup\left(0, \frac{\sqrt{2}}{2}\right)$
(B) $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
(C) $\left(-\frac{\sqrt{2}}{2}, 0\right) \cup\left(\frac{\sqrt{2}}{2}, \infty\right)$
(D) $\left(-\frac{\sqrt{2}}{2}, \infty\right)$
(D) $\left(-\infty, \frac{\sqrt{2}}{2}\right)$

8. The shortest distance from the curve $y=\sqrt{x}$ and the point $(4,0)$ is

\qquad 9. The diagram below shows a rectangle inscribed in a semicircle.

$$
\begin{gathered}
A^{\prime}=0 \\
\text { when } 2\left(4-x^{2}\right)-2 x^{2}=0 \\
8-2 x^{2}-2 x^{2}=0 \\
8-4 x^{2}=0 \\
4 x^{2}=8 \\
x^{2}=2 \\
x= \pm \sqrt{2}
\end{gathered}
$$

If the radius of the semicircle is 2 meters, what is the maximum area, in square meters, of the rectangle?
(A) $4 \sqrt{2}$
(B) $2 \sqrt{2}$
(C) 4
(D) 8
(E) 2
So, max area when $x=\sqrt{2}$
$A=2(\sqrt{2}) \sqrt{4-(\sqrt{2})^{2}}$
$=2 \sqrt{2} \sqrt{4-2}$
$=2 \sqrt{2} \sqrt{2}$
$=2.2$
$=4$
10. The graph of a function is shown below.

On the closed interval $[a, b]$, at how many points is the Mean Value Theorem satisfied?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Part II: Free Response

11. Let f be the function defined by $f(x)=36 x^{1 / 3}-9 x^{4 / 3}$
(a) What is the domain of $f(x)$? $f(x)=36 \sqrt[3]{x}-9 \sqrt[3]{x^{4}}$

$$
D_{f}: \mathbb{R}\left(V_{1}\right) \text { or }\{x \mid x \in \mathbb{R}\} \quad \text { or } x \in(-\infty, \infty)
$$

(b) Show that $f^{\prime}(x)=\frac{-12(x-1)}{\sqrt[3]{x^{2}}}$. Show the work that leads to your answer.

$$
f(x)=36 x^{1 / 3}-9 x^{4 / 3}
$$

$$
\begin{array}{ll}
f(x)=36 x & \text { Method } 2 \text { : common den dominator } \\
f^{\prime}(x)=\frac{36}{3} x_{-2 / 2}^{-2 / 3}-\frac{36}{3} x_{1 / 3}^{1 / 3} \quad \text { (VI } & f^{\prime}(x)=\frac{12}{x^{2 / 3}}-12 x^{1 / 3}
\end{array}
$$

$$
f^{\prime}(x)=12 x^{-2 / 3}-12 x^{1 / 3}
$$

$$
f^{\prime}(x)=\frac{12}{x^{2 / 3}}-\frac{12 x^{1 / 3}}{1}\left(\frac{x^{2 / 3}}{x^{2 / 3}}\right)
$$

Method 1: Factor out least powers $\quad f^{\prime}(x)=\frac{12-12 x}{x^{2 / 3}}$
$f^{\prime}(x)=12 x^{-2 / 3}[1-x]$
$=\frac{12(1-x)}{\sqrt[3]{x^{2}}}$
$=\frac{-12(x-1)}{\sqrt[3]{x^{2}}}$
(c) Find the intervals on which f is decreasing.

(d) At each critical value, determine if $f(x)$ has a local maximum, a local minimum, or neither. Justify.
f has neither a local max nor local min at $x=0, \sqrt{7}$
since f^{\prime} is positive on either side of $x=0$. (18)
f has a local max at $x=1,(9)$
since f^{\prime} changes from positive to negative at $x=1$ (10)

