\qquad Date \qquad Period \qquad

TEST: 5.1-5.4, NO CALCULATOR

Part I: Multiple Choice: Put the letter in the letter place. Be sure it's write, wright, rite, . . . correct.
\qquad 1. The function f given by $f(x)=2 x^{3}-3 x^{2}-12 x$ has a local minimum at $x=$
(A) -1
(B) 0
(C) 2
(D) $\frac{3-\sqrt{105}}{4}$
(E) $\frac{3+\sqrt{105}}{4}$

$$
\begin{gathered}
f^{\prime}=6 x^{2}-6 x-12=0 \\
6\left(x^{2}-x-2\right)=0 \\
6(x-2)(x+1)=0 \\
x=2,-1 \\
-2^{-1}
\end{gathered}
$$

A 2. Let f be the function given by $f(x)=x^{3}-6 x^{2}$. The graph of f is concave up yb hen
(A) $x>2$
(B) $x<2$
(C) $0<x<4$
(D) $x<0$ or $x>4$ only
(E) $x>6$ only
$f^{\prime \prime}>0$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x \\
& f^{\prime \prime}(x)=6 x-12=0 \\
& x=2 \\
& f^{\prime \prime}=\frac{2}{x}=3
\end{aligned}
$$

\qquad 3. If $\left.f^{\prime}(x)=(x-2)(x) 4\right)^{2}(x-4)^{3}$, then f has which of the following relative extrema?
(I.) A relative maximum at $x=2$
H. A relative minimum at $x=3$

HI. A relative maximum at $x=4$
(A) I only
(B) III only
(C) I and III only
(D) II and III only
(E) I, II, and III $f^{\prime}=0, x=2,3,4$

\square
4. For $x>0, f$ is a function such that $f^{\prime}(x)=\frac{\ln x}{x}$ and $f^{\prime \prime}(x)=\frac{1-\ln x}{x}$. Which of the following is
true?
(A)
(B) f is-deereasing for $x>1$, and the graph of f is concave up for $x>e$
((C) f is increasing for $x>1$, and the graph of f is concave down for $x>e$ e
(D) f is increasing for $x>1$, and the graph of f is concave up for $x>e$
(E) f is decreasing for $0<x<1$, and the graph of f is concave down for $0<x<e^{3 / 2}$

\qquad 5. The figure above shows the graph of f^{\prime}, the derivative of the function f on the open interval $-7<x<7$. If f^{\prime} has four zeros on $-7<x<7$, how many relative maxima does f have on $-7<x<7$?
(B) two
(C) three
(D) four
(E) five

iv at $X^{\prime}=1$
x
$f^{\prime \prime}(x)$

\qquad 6. The polynomial function f has selected values of its second derivative $f^{\prime \prime}$ given in the table above. Which of the following statements must be true?
$\begin{array}{ll}\text { (A) } f \text { is increasing on the interval }(0,2) & \text { (B) } f \text { is decreasing on the interval }(0,2)\end{array}$
(C) f has a local maximum at $x=1 \quad$ (D) The graph of f has a point of inflection at $x=1$
(E) The graph of f changes concavity in the interval $(0,2)$

7. Let f be a function with a second derivative given by $f^{\prime \prime \prime}(x)=x^{2}(x-3)^{\prime}(x-6)^{\prime}$. What are the x coordinates of the points of inflection of the graph of f ?
(A) 0 only
(B) 3 only \quad (C) 0 and 6 only
(D) 3 and 6 only
(E) 0,3 , and 6 only

$$
\begin{array}{ll}
f^{\prime \prime}=0 & \text { RiV. } \\
x=0,3,6 &
\end{array}
$$

Part II: Free Response

Say what you want, but be sure to document and say it correctly with correct documentation.
2011 AB 4 Form $B \rightarrow$ Cont. $D: x>0,(0, \infty)$
10. Consider a differentiable function f having domain of all positive real numbers, and for which it is known that $f^{\prime}(x)=(4-x) x^{-3}$ for $x>0$.
(a) If $f(1)=2$, write an equation of the tangent line to $f(x)$ at $x=1$.
(b) Find the x-coordinate of the critical point of f. Determine whether the point is a relative maximum, a relative minimum, or neither for the function f. Justify your answer.
(c) Find all intervals on which the graph of f is concave down. Justify your answer/

