\qquad
Calculus Test: 4.1 to 5.1. No Calculator

Part I: Multiple Choice

1. Find the location and value of all relative extrema of the graph shown at right.
(A) Relative maximum of 3 at -2 ; Relative minimum of 0 at 2
(B) Relative maximum of 3 at -2 .
(C) Relative minimum of 0 at 2
(D) Relative maximum of -2 at 3 ; Relative minimum of 2 at 0 .
(E) None

B 2. The critical values of $f(x)=x e^{-x}$ are: $f^{\prime}=e^{-x}-x e^{-x}=0, e^{-x}(1-x)=0$
(A) $x=-1$
(B) $x=1$
(C) $x=1, x=-1$
(D) $x=0 \quad x=1$
(E) No critical values
\qquad 3. Find the global max and min of $f(x)=x^{3}-3 x+1$ on the interval $[0,2] . f^{1}=3 x^{2}-3=0, x= \pm 1$
(A) Global max at $x=0$; Global min at $x=1$
(B) Global max at $x=2$; Global min at $x=0$
(C) Global max at $x=2, x=-1$; Global min at $x=1$
(D) Global max at $x=1$; Global min at $x=1$
(E) Global max at $x=2$; Global min at $x=1 \quad f(0)=1, f(2)=3, f(1)=-1$
\qquad 4. If $f(x)=\ln \left(x+4+e^{-3 x}\right)$, then $f^{\prime}(0)=f^{\prime}=\frac{1-3 e^{-3 x}}{x+4 e^{-3 x}}, f^{\prime}(0)=\frac{-2}{5}$
(A) $-\frac{2}{5}$
(B) $\frac{1}{5}$
(C) $\frac{1}{4}$
(D) $\frac{2}{5}$
(E) nonexistent
\qquad 5. What is the slope of the line tangent to the curve $y=\arctan (4 x)$ at the point at which $x=\frac{1}{4}$?
(A) 2
(B) $\frac{1}{2}$
(C) 0
(D) $-\frac{1}{2}$
(E) $-2^{y^{\prime}}: \frac{4}{1+16 x^{2}}, y^{\prime}\left(\frac{1}{4}\right)=\frac{4}{1+1}=2$
\qquad 6. What is the slope of the line tangent to the curve $3 y^{2}-2 x^{2}=6-2 x y$ at the point $(3,2)$?
(A) 0
(B) $\frac{4}{9}$
(C) $\frac{7}{9}$
(D) $\frac{6}{7}$
(E) $\frac{5}{3} \begin{aligned} 6 y \cdot y^{\prime}-4 x & =-2 y-2 x y^{\prime} \\ 12 y^{\prime}-12 & =-4-6 y^{\prime}\end{aligned}\left\{\begin{array}{l}18 y^{\prime}=8 \\ y^{\prime}=\frac{4}{9}\end{array}\right.$
\qquad 7. Let f be the function defined by $f(x)=x^{3}+x$. If $g(x)=f^{-1}(x)$ and $g(2)=1$, what is the value of $g^{\prime}(2)$? $g^{\prime}(2)=\frac{1}{f^{\prime}(1),}, \begin{aligned} & f^{\prime}=3 x^{2}(1)=4\end{aligned}$
(A) $\frac{1}{13}$
(B) $\frac{1}{4}$
(C) $\frac{7}{4}$
(D) 4
(E) 13

A 8. If $f(x)=x^{2}+2 x$, then $\frac{d}{d x}[f(\ln x)]=\begin{array}{r}f(\ln x)=(\ln x)^{2}+2(\ln x) \\ \frac{d}{d x}: \frac{2 \ln x}{x}+\frac{2}{x}=\frac{2 \ln x+2}{x}\end{array}$
(A) $\frac{2 \ln x+2}{x}$
(B) $2 x \ln x+2$
(C) $2 \ln x+2$
(D) $2 \ln x+\frac{2}{x}$
(E) $\frac{2 x+2}{x}$
E 9. If $y=x^{2} \sin (2 x)$, then $\frac{d y}{d x}=\quad \begin{array}{r}y^{\prime}=\frac{2 x \sin 2 x+2 x^{2} \cos 2 x}{} \quad 2 x\left(\sin 2 x+x \cos ^{2} x\right)\end{array}$
(A) $2 x \cos (2 x)$
(B) $4 x \cos (2 x)$
(C) $2 x[\sin (2 x)+\cos (2 x)]$
(D) $2 x[\sin (2 x)-x \cos (2 x)]$
(E) $2 x[\sin (2 x)+x \cos (2 x)]$

Part II: AB Free Response:

10. (1992 AB4/BC1) Consider the curve defined by the equation $y+\cos y=x+1$ for $0 \leq y \leq 2 \pi$.
(a) Find $\frac{d y}{d x}$ in terms of y.
(b) Write an equation for each vertical tangent to the curve.
(c) Find $\frac{d^{2} y}{d x^{2}}$ in terms of y.
(a) $\begin{aligned} \frac{d}{d x}[y+\cos y] & =\frac{d}{d x}[x+1] \\ \frac{d y}{d x}-\sin y \cdot \frac{d y}{d x} & =1\end{aligned}$
$\frac{d y}{d x}(1-\sin y)=1$
$\frac{d y}{d x}=\frac{1}{1-\sin y}$
(b) Vertical tangent when $\frac{d y}{d x}=\frac{\neq 0}{0}(4)$
$1-\sin y=0$

$$
\begin{aligned}
& \sin y=1 \\
& y=\frac{\pi}{2}
\end{aligned}
$$

$\frac{\text { When } y=\frac{\pi}{2}:}{\frac{\pi}{2}+\cos \frac{\pi}{2}=x+1}$
$x=\frac{\pi}{2}+0-1$
eq: $x=\frac{\pi}{2}-1$ or $\frac{\pi-2}{2}$
(c) $\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{d}{d x}\left[(1-\sin y)^{-1}\right]$
$\frac{d^{2} y}{d x^{2}}=-(1-\sin y)^{-2}(-\cos y) \cdot \frac{d y}{d x}$

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=-(1-\sin y)^{-2}(-\cos y) \cdot\left(\frac{1}{1-\sin y}\right) \\
& \text { or }=\frac{\cos y}{(1-\sin y)^{3}} \text { ak }
\end{aligned}
$$

or $\quad \frac{d^{2} y}{d x^{2}}=\frac{(1-\sin y)(0)-(1)(-\cos y) \frac{d y}{d x}}{(1-\sin y)^{2}}$
$=\frac{\cos y\left(\frac{1}{1-\sin y}\right)}{(1-\sin y)^{2}}$

