\qquad Date \qquad Favorite Cold Yam Temperature \qquad
AP Calculus TEST: 2.1-2.7, NO CALCULATOR
Part I: Multiple Choice-Put the correct CAPITAL letter in the space to the left of each question. SHOW ALL WORK/INDICATE ALL METHODS on a SEPARATE SHEET OF PAPER. Number your scratch work.
_1. $\lim _{h \rightarrow 0} \frac{\frac{8}{\sqrt[3]{(6+h)+2}}-\frac{8}{\sqrt[3]{6+2}}}{h}=$
(A) $-\frac{1}{6}$
(B) $\frac{1}{6}$
(C) $-\frac{1}{2}$
(D) $\frac{1}{2}$
(E) DNE
_2. If $f(x)=\frac{x^{2}+c^{2}}{x^{2}-c^{2}}$ where c is a constant, then $f^{\prime}(x)=$
(A) $\frac{-4 c^{2} x}{\left(x^{2}-c^{2}\right)^{2}}$
(B) $\frac{-2 c^{2} x}{\left(x^{2}-c^{2}\right)^{2}}$
(C) $\frac{4 c^{2} x}{\left(x^{2}-c^{2}\right)}$
(D) $\frac{2 c^{2} x}{\left(x^{2}-c^{2}\right)^{2}}$
(E) 1

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	-2	$\frac{5}{2}$	13
2	-3	5	5	$-\frac{1}{2}$

The table above gives the values for differentiable functions $f(x)$ and $g(x) \&$ their continuous derivatives at selected values. Use the table to answer questions 3, 4, and 5.
\qquad 3. If $h(x)=[f(2 x)]^{3}$, use the table to find $h^{\prime}(1)$.
(A) 54
(B) -90
(C) 135
(D) 270
(E) $\frac{10}{3}$
\qquad 4. If $K(x)=\sqrt[3]{f(x)+2 g(x)}$, find $K^{\prime}(1)$.
(A) -2
(B) 2
(C) $-\frac{3}{2}$
(D) $\frac{3}{2}$
(E) 0
\qquad 5. For $1 \leq x \leq 2$, which of the following must be true?
I. $g(c)=\frac{7}{2}$ for some $c \in(1,2)$
II. $g^{\prime}(r)=0$ for some $r \in(1,2)$
III. $f(a)=g(a)$ for some $a \in(1,2)$
(A) I only
(B) II only
(C) I and II only
(D) II and III only
(E) I, II, and III
6. If $f(x)=\cot x$ and $\frac{3}{y}=f(x)$, find $\left.\frac{d y}{d x}\right|_{x=\frac{11 \pi}{6}}$
(A) 0
(B) 4
(C) 12
(D) $3 \sqrt{3}$
(E) $-\sqrt{3}$
7. Let $f(x)=2 \sin x \cos x$ for $0 \leq x<\pi$. Find all the values for which $f^{\prime}(x)=1$.
I. $x=\frac{\pi}{6}$
II. $x=\frac{5 \pi}{6}$
III. $x=\frac{\pi}{3}$
(A) I only
(B) II only
(C) I, II only
(D) I, III only
(E) II, and III only
\qquad 8. If $h(x)=x^{2} g^{\prime}(x)$, where $g(x)=\frac{x+\sec x}{x}$, then what is the slope of the secant line on the graph of $h(x)$ for $x \in[\pi, 2 \pi]$?
(A) -2
(B) 2
(C) $-\frac{2}{\pi}$
(D) $\frac{2}{\pi}$
(E) 0
-2. If $\frac{d}{d x}\left[\left(\frac{x+3}{2 x-1}\right)^{4}\right]=$
(A) $-28 \frac{(x+3)^{3}}{(2 x-1)^{3}}$
(B) $-28 \frac{(x+3)^{3}}{(2 x-1)^{5}}$
(C) $28 \frac{(x+3)^{3}}{(2 x-1)^{5}}$
(D) $-20 \frac{(x+3)^{3}}{(2 x-1)^{3}}$
(E) $20 \frac{(x+3)^{3}}{(2 x-1)^{5}}$
\qquad 10. If $f(1)=\frac{\pi}{4}$ and $f^{\prime}(1)=3$, find the equation of the tangent line to $h(x)=\cot (f(x))$ at $x=1$.
(A) $6 x-y=7$
(B) $6 x+y=7$
(C) $6 x-y=-7$
(D) $-6 x+y=2$
(E) $6 x-y=7$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	-3	2	-1	$\frac{1}{2}$
2	1	-2	3	$\frac{1}{4}$
3	5	$4 a$	0	$\frac{1}{6}$

\qquad 11. The table above gives the values for differentiable functions $f(x)$ and $g(x) \&$ their derivatives at selected values. Find the value of a (if it exists) so that the tangent lines to $f(g(x))$ and $g(f(x))$ are perpendicular at $x=2$.
(A) $-\frac{1}{2}$
(B) 1
(C) 2
(D) -5
(E) DNE
_12. $\frac{d^{50}}{d x^{50}}[\sin 3 x]=$
(A) $3^{50} \sin 3 x$
(B) $3^{50} \cos 3 x$
(C) $-3^{50} \sin 3 x$
(D) $-3^{50} \cos 3 x$
(E) $150 \cos 3 x$
\qquad 13. Find the slope of the tangent line to $x^{2} y^{2}=(x+2)^{2}\left(40-y^{2}\right)$ at $(-3,2)$.
(A) $-\frac{6}{5}$
(B) $\frac{3}{5}$
(C) $\frac{9}{10}$
(D) $-\frac{3}{10}$
(E) 4
14. If $\cos (x y)=\frac{\sqrt{3}}{2}$, find $\frac{d^{2} y}{d x^{2}}$.
(A) $\frac{1}{\sin (x y)}$
(B) $-\frac{1}{\sin (x y)}$
(C) 0
(D) $\frac{2 y}{x^{2}}$
(E) $-\frac{2 y}{x^{2}}$
\qquad 15. When the gates opened at the Unicorn football game, everyone rushed in. The rate R at which rabid fans entered Unicorn stadium at different times is given in the table below. Based on the data below, which of the following statements can be quantitatively substantiated?

time (sec)	0	25	50	75	100	180
R (people/sec)	70	120	220	340	300	160

I. At $t=2$ seconds, the instantaneous rate of change of R is approximately 2 people $/ \mathrm{sec}^{2}$
II. At $t=24$ seconds, the instantaneous rate of change of R is approximately 8 people $/ \mathrm{sec}^{2}$
III. At $t=75$ seconds, more people are entering Unicorn stadium that at any other time during the first 1.5 minutes.
(A) I only
(B) II only
(C) I and III only
(D) I and II only
(E) I, II, and III

Part II: Free Response-Show all set ups, use correct notation, indicate your methods, and answer in complete math/English sentences (with units) when appropriate.
16. An elephant moves along the x-axis so that at any time $t \in[0,2 \pi]$ seconds, its position, in feet, is given by $x(t)=2 t \sin t+2 \cos t+t^{2}$.
(a) Determine if the speed of the elephant is increasing or decreasing at $t=\frac{\pi}{6}$ seconds. Justify your answer.
(b) For what value(s) of $t \in(0,2 \pi)$ is the elephant at rest? Show the work that leads to your answer.
(c) On the interval $0 \leq t \leq 2 \pi$ seconds, how far does the elephant travel? Justify your answer.

