\qquad Date \qquad Common Injury punctured Aorta

AP Calculus TEST: 2.1-2.4 , NO CALCULATOR
Part I: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question.

D1. If $y=\sec x$, then $\frac{d^{2} y}{d x^{2}}=$
(A) $\sec ^{3} x \tan x$
(B) $\sec x \tan x$
(C) $\sec x\left(2 \sec ^{2} x+1\right)$
(D) $\sec x\left(2 \sec ^{2} x-1\right)$
$\frac{d y}{d x}=\sec x \tan x$

$$
\begin{aligned}
\frac{d x}{d x^{2} y} & =(\sec x \tan x) \tan x+(\sec x)\left(\sec ^{2} x\right) \\
& =\sec x \cdot \tan ^{2} x+\sec ^{3} x \\
& =\sec x\left(\tan ^{2} x+\sec ^{2} x\right)
\end{aligned}\left\{\begin{array}{l}
\text { product rule } \\
=\sec x\left(\sec ^{2} x-1+\sec ^{2} x\right) \text { *P.I.D. } \\
=\sec x\left(2 \sec ^{2} x-1\right)
\end{array}\right.
$$

A. 2. If $g(x)=\frac{x+2}{x-2}$, then $g^{\prime}(-2)=$

$$
\begin{aligned}
g^{\prime}(x) & =\frac{(x-2)(1)-(x+2)(1)}{(x-2)^{2}} \\
g^{\prime}(x) & =\frac{x-2-x-2}{(x-2)^{2}} \\
g^{\prime}(x) & =\frac{-4}{(x-2)^{2}} \\
g^{\prime}(-2) & =\frac{-4}{(-4)^{2}} \\
& =\frac{-4}{16} \\
& =\frac{-1}{4}
\end{aligned}
$$

(A) $-\frac{1}{4}$
(B) -1
(C) 1
(D) $\frac{1}{4}$

3. The function $K(x)$, whose graph is composed of straight line segments is shown above. Which of the following is true for $K(x)$ on the open interval $(-2,3)$?
I. $\lim _{x \rightarrow 0} K(x)$ exists $\quad V=1$
II. $K(x)$ is differentiable for all $x \in(-2,3) X$ not $a+x=0,1$
III. The derivative of $K(x)$ is positive on the interval $(1,3) \vee$ only dec for $x \in(0,1)$
(A) I only
(B) II only
(C) I and III only
(D) I, II, and III

A 4. If $f(x)=-x^{5}+\frac{1}{x}-\sqrt[3]{x}+\frac{1}{\sqrt{x^{5}}}$, then $f^{\prime}(1)=$
(A) $-\frac{53}{6}$
(B) $-\frac{58}{15}$
(C) $\frac{58}{15}$
(D) $\frac{53}{6}$

$$
\begin{aligned}
& f(x)=-x^{5}+x^{-1}-x^{1 / 3}+x^{-5 / 2} \\
& f^{\prime}(x)=-5 x^{4}-x^{-2}-\frac{1}{3} x^{-2 / 3}-\frac{5}{2} x^{-7 / 2} \\
& f^{\prime}(x)=-5 x^{4}-\frac{1}{x^{2}}-\frac{1}{33 \sqrt{x^{2}}}-\frac{5}{2 \sqrt{x^{7}}}
\end{aligned}\left\{\begin{aligned}
f^{\prime}(1) & =-5-1-\frac{1}{3}-\frac{5}{2} \\
& =-6-\frac{17}{6} \\
& =-\frac{53}{6}
\end{aligned}\right.
$$

So $\frac{7}{4} x-\frac{3}{4}=x^{3}+x+c$ \& $\frac{7}{4}=3 x^{2}+1$

$$
-4 y=-7 x+3, y=\frac{7}{4} x-\frac{3}{4},
$$

$$
x^{2}=\frac{1}{4}, x= \pm \frac{1}{2}
$$

5. If the line $7 x-4 y=3$ is tangent in the first quadrant to the curve $y=x^{3}+x+c$, then $c=$ in 1 st Quad,
(A) $-\frac{1}{2}$
(B) $-\frac{1}{4}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2} y^{\prime}=\frac{7}{4}, y^{\prime}=3 x^{2}+1 \quad x=\frac{1}{2}$
So, $\frac{7}{4}\left(\frac{1}{2}\right)-\frac{3}{4}=\frac{1}{8}+\frac{1}{2}+C, c=-\frac{1}{2}$
\qquad 6. The function $f(x)=x^{4}+3 x^{3}+2 x+4$ must have a zero/root between which of the following values of x ? VT
(A) -2 and 1
(B) 1 and 2
(C) 2 and 3
(D) 3 and 4
$f(-2)=16-24-4+4$
$\begin{aligned} f(-2) & =-8<0 \\ f(1) & =1+3+2+4 \\ & =10>0\end{aligned}$
$g(x)= \begin{cases}x+2, & x \leq 3 \sum_{x \rightarrow 3}^{e}-g(x)=g(3)=5 \\ 4 x-7, & x>3 \sum_{x \rightarrow 3}^{\ell} g(x)=5\end{cases}$
6. Let f be the function given above. Which of the following statements are true about g ?
I. $\lim _{x \rightarrow 3} g(x)$ exists $\vee=5$
II. g is continuous at $x=3 \vee s=s=5$
III. g is differentiable at $x=3 \times \quad 4 \neq 1$

$$
g^{\prime}=\left\{\begin{array}{c}
1, x<3 \\
4, x>3
\end{array}\right.
$$

(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III
8. What are all the horizontal asymptotes for the graph of $f(x)=\frac{5 x}{\sqrt{x^{2}+1}} ? \approx \frac{5 x^{\prime}}{1 x^{\prime}}$
(A) $y=0$ only
(B) $y=5$ only
(C) $y=-5$ only
(D) $y=5$ and $y=-5$

9. $\lim _{h \rightarrow 0} \frac{9\left(\frac{1}{3}(x+h)\right)^{3}-9\left(\frac{1}{3} x\right)^{3}}{h}=f^{\prime}(x)$

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} f(x)=5 & \text { (plug in pos \& neg info } \\
\lim _{x \rightarrow-\infty} f(x)=-5 & f(x) \text { to get sign of } \infty \text {) }
\end{array}
$$

$f(x)=9\left(\frac{1}{3} x\right)^{3}$
(A) $\frac{x^{2}}{3}$
(B) 0
(C) $9 x^{2}$
(D) x^{2}
$=(9)\left(\frac{1}{27} x^{3}\right)$
$=\frac{1}{3} x^{3}$
$f^{\prime}(x)=x^{2}$

Part II: Free Response-Do all work in the space provided. Show all steps. Use proper notation.
10. If $f(x)=\frac{5}{3} x^{3}+2 x^{2}-3 x+11$
(a) Let $Q(x)=f^{\prime}(x)$. Find $Q(x)$ and $Q^{\prime}(x)$.

$$
\begin{aligned}
& Q(x)=5 x^{2}+4 x-3 \\
& Q^{\prime}(x)=10 x+4
\end{aligned}
$$

(b) Find $\lim _{x \rightarrow \infty} \frac{Q(x)}{\left[Q^{\prime}(x)\right]^{2}}=$

$$
\lim _{x \rightarrow \infty} \frac{5 x^{2}+4 x-3}{[10 x+4]^{2}} \frac{5 x^{2}+4 x-3}{100 x^{2}+80 x+16}=\frac{5}{100}=\frac{1}{20}(\sqrt{3})
$$

(c) Find $Q(-2)$ and $Q^{\prime}(-2)$.

$$
\begin{aligned}
& \text { Find } Q(-2) \text { and } Q^{\prime}(-2) . \\
& Q(-2)=5(4)-8-3=9 \\
& Q^{\prime}(-2)=-20+4=-16
\end{aligned}
$$

(d) Find the equation of the tangent line, in Taylor Form, of $Q(x)$ at $x=-2$.

$$
{ }_{m}^{p+i(-2,9)} \mathrm{m}:-16: y=9-16(x+2)
$$

(e) Find the equation of the normal line, in Taylor Form, of $Q(x)$ at $x=-2$.

$$
\begin{aligned}
& \text { Pt: }(-2,9) \xrightarrow{\rightarrow} \text { perp. to tan. line } \\
& M: \frac{1}{16} \text { (opp recip) eq: } y=9+\frac{1}{16}(x+2)
\end{aligned}
$$

(f) The equation of the normal line to $Q(x)$ at $x=-2$ intersects the graph of $Q(x)$ at another x-value. Find this x-value. Show the work that leads to your answer.

$$
\begin{aligned}
& 9+\frac{1}{16}(x+2)=5 x^{2}+4 x-3 \\
& 16\left[9+\frac{1}{16}(x+2)\right]=16\left[5 x^{2}+4 x-3\right] \\
& 144+x+2=80 x^{2}+64 x-48 \\
& 0=80 x^{2}+63 x-194 \\
& 0=(x+2)(80 x-97) \\
& \text { So, } x=-2 \& \ldots x=\frac{97}{80}(\text { dun!) }
\end{aligned}
$$

