Name \qquad Date \qquad Famous General \qquad
AP Calculus TEST: 2.1-2.4, NO CALCULATOR
Part Ein: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question.
\qquad 1. In the $x y$-plane, the line $x+y=k$, where k is a constant, is tangent to the graph fo $f(x)=x^{2}+3 x+1$. What is the value of k ?
(A) -3
(B) -2
(C) -1
(D) 0
(E) 1

$$
g(x)= \begin{cases}a x^{2}+b x+2, & \text { for } x \leq 1 \\ \frac{2 b}{x}-a & \text { for } x>1\end{cases}
$$

\qquad 2. Let g be the function defined above, where a and b are constants. If g is differentible at $x=1$, what is the value of a ?
(A) $-\frac{3}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) $-\frac{1}{2}$
(E) No such value exists
\qquad 3. If $y=\frac{3 x-4}{5 x+7}$, then $\frac{d y}{d x}=$
(A) $\frac{30 x-1}{(5 x+7)^{2}}$
(B) $\frac{2 x+3}{(5 x+7)^{2}}$
(C) $-\frac{41}{(5 x+7)^{2}}$
(D) $\frac{41}{(5 x+7)^{2}}$
(E) $-\frac{1}{(5 x+7)^{2}}$
\qquad 4. $\lim _{h \rightarrow 0} \frac{4 \cos \left(\frac{3 \pi}{2}+h\right)-4 \cos \frac{3 \pi}{2}}{h}=$ (A) -4
(B) 4
(C) 0
(D) -1
(E) DNE

\qquad 5. The graph of a function f is shown above. At which value(s) of x is f not differentiable?
(A) a
(B) a and b
(C) a and d
(D) b and d
(E) a, b, and d

$$
h(x)= \begin{cases}4 x-3, & x \leq 2 \\ \frac{3}{2} x^{2}-2 x+3, & x>2\end{cases}
$$

\qquad 6. Let g be the function given above. Which of the following statements are true about g ?
I. $\lim _{x \rightarrow 2} h(x)$ exists
II. h is continuous at $x=2$
III. h is differentiable at $x=2$
(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III
\qquad 7. Which of the following is the equation of the normal line to the function $f(x)=x^{2}+3 x-5$ at $x=1$?
(A) $5 x-y=-4$
(B) $x-5 y=-4$
(C) $5 x+y=-4$
(D) $x+5 y=-4$
(E) $-5 x+y=-4$
\qquad 8. If $f(x)=x^{2} \sin (x)-\sqrt{x^{3}}$, then $f^{\prime}(0)=$
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
\qquad 9. If $f(x)=x^{3}+k x^{2}+x-3$, and if $f^{\prime}(-2)=17$, then $k=$
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

Part Dos: Free Response-Do all work in the space provided. Show all steps. Use proper notation.
10. If $f(x)=\frac{2}{3} x^{3}+\frac{3}{2} x^{2}-x+5$
(a) Let $Q(x)=f^{\prime}(x)$. Find $Q(x)$ and $Q^{\prime}(x)$.
(b) Find $\lim _{x \rightarrow \infty} \frac{Q^{\prime}(x)}{Q(x)}=$
(c) Find $Q(-2)$ and $Q^{\prime}(-2)$.
(d) Find the equation of the tangent line, in Taylor Form, of $Q(x)$ at $x=-2$.
(e) Find the equation of the normal line, in Taylor Form, of $Q(x)$ at $x=-2$.
(f) The equation of the normal line to $Q(x)$ at $x=-2$ intersects the graph of $Q(x)$ at another x-value. Find this x-value. Show the work that leads to your answer.

