\qquad Date \qquad Pasta Shape \qquad

AP Calculus TEST: 2.1-2.3, NO CALCULATOR

Part I: Multiple Choice-Put the correct CAPITAL letter in the space to the left of each question. Attach any scratch work to the back of this test upon completion.
\qquad 1. In the $x y$-plane, the line $6 x+y=2$, where k is a constant, is tangent to the graph of $y=2 k+x^{2}$.

What is the value of k ?
(A) -3
(B) 3
(C) $-\frac{2}{11}$
(D) 2
(E) $\frac{11}{2}$
\qquad 2. Which of the following is/are true regarding the function $f(x)=3-|6 x+12|$?
I. $f^{\prime}(-2)=D N E$
II. $f^{\prime}(0)=6$
III. $f(x)$ is continuous for all x
(A) I only
(B) III only
(C) I and II only
(D) I, II, and III
(E) I and III only

$$
f(x)= \begin{cases}a x^{2}+b x+1 & \text { for } x \leq-2 \\ -3 a x+2 b & \text { for } x>-2\end{cases}
$$

\qquad 3. Let f be the function defined above, where a and b are constants. If f is differentible at $x=-2$, what is the value of $a \div b$?
(A) -3
(B) $\frac{1}{6}$
(C) 1
(D) 6
(E) No such values exist
\qquad 4. If $y=3 x^{2}(x+2)^{2}$, then $\frac{d y}{d x}=$
(A) $12 x^{3}+18 x^{2}+24 x$
(B) $12 x^{3}+36 x^{2}+24 x$
(C) $12 x^{3}+24 x$
(D) $12 x^{3}+12 x$
(E) $9 x^{2}+12 x$
[_5. $\lim _{h \rightarrow 0} \frac{2 \cos \left(\frac{4 \pi}{3}+h\right)-2 \cos \frac{4 \pi}{3}}{h}=$ (A) $\sqrt{3}$
(B) 1
(C) $-\sqrt{3}$
(D) -1
(E) $\sqrt{2}$

\qquad 6. The graph of a function $f(x)$ is given above. The graph of $f(x)$ has a vertical asymptote at $x=0$, a vertical tangent line at $x=4$, and x-intercepts at $x=-4, x=-0.5$, and $x=1$. For what values of x is the function $f(x)$ is not differentiable?
I. $x=-4$
II. $x=0$
III. $x=3$
IV. $x=4$
(A) I \& II only
(B) I, II, \& III only
(C) I, II, \& IV only
(D) I \& IV only
(E) I, II, III, \& IV

$$
g(x)= \begin{cases}6 x-2, & x<-1 \\ -3 x^{2}-5, & x \geq-1\end{cases}
$$

\qquad 7. Let g be the function given above. Which of the following statements are true about g ?
I. $\lim _{x \rightarrow-1} g(x)$ exists
II. g is continuous at $x=-1$
III. g is differentiable at $x=-1$
(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}
$$

\qquad 8. The above limit represents $f^{\prime}(c)$, the derivative of some function $f(x)$ at some $x=c$. What are $f(x)$ and $x=c$?
(A) $f(x)=\sqrt{x+3}, c=1$
(B) $f(x)=\sqrt{x+3}-2, c=1$
(C) $f(x)=\sqrt{x+3}, c=2$
(D) $f(x)=\sqrt{x}, c=3$
(E) $f(x)=\sqrt{x+2}, c=1$

- 9. $\frac{d}{d x}\left[\frac{2 x^{2}-3 \sqrt[3]{x}+1}{\sqrt[3]{x}}\right]=$
(A) $\frac{-10 x^{2}-1}{3 \sqrt[3]{x^{4}}}$
(B) $\frac{10 x^{2}+1}{3 \sqrt[4]{x^{3}}}$
(C) $\frac{10 x^{2}-1}{3 \sqrt[4]{x^{3}}}$
(D) $\frac{10 x^{2}-1}{3 \sqrt[3]{x^{4}}}$
(E) $\frac{10 x^{2}+1}{3 \sqrt[3]{x^{4}}}$

Part II: Free Response-Do all work below in the space provided.
10. If $f(x)=x^{3}+2 x^{2}+4 x+3$
(a) Let $P(x)=f^{\prime}(x)$. Find $P(x)$ and $P^{\prime}(x)$.
(b) Find $P(1)$ and $P^{\prime}(1)$.
(c) Find the equation of the tangent line, in Taylor Form, of $P(x)$ at $x=1$.
(d) Find the equation of the normal line, in Taylor Form, of $P(x)$ at $x=1$.
(e) The equation of the normal line to $P(x)$ at $x=1$ intersects the graph of $P(x)$ at another x-value. Find this x-value. Show the work that leads to your answer.

