AP Calculus TEST: 2.1-2.3, NO CALCULATOR

Part WON: Multiple Choice-Put the correct CAPITAL letter in the space to the left of each question. Attach any scratch work to the back of this test upon completion.
\qquad 1. In the $x y$-plane, the line $2 x-y=1$, where k is a constant, is tangent to the graph of $y=k-x^{2}$. What is the value of k ?
$y=2 x-1$
(B) -2
(C) -1
(D) 0
(E) 1
(A) -3
(B) -2
$y^{\prime}=-2 x$

E
2. Which of the following is/are true regarding the function $f(x)=5|x+3|-2$?
I. $f^{\prime}(3)=D$ DeE $\quad f^{\prime}(-3)=D N E$
II. $f^{\prime}(-4)=-5$

III. $f(x)$ is continuous for all x
(A) I only
(B) III only
(C) I and III only
(D) I, II, and III
(E) II and III only

$$
f(x)= \begin{cases}a x^{2}+b x+1 & \text { for } x \leq-1 \\ -3 a x+2 b & \text { for } x>-1\end{cases}
$$

3. Let f be the function defined above, where a and b are constants. If f is differentible at $x=-1$, what is the value of $a+b$?
(A) -2
(B) 5
(C) 0
(D) -3
(E) No such values exist

$$
\begin{aligned}
& \text { continuity } \\
& a-b+1=3 a+2 b \\
& \text { (1) }-2 a+1=3 b
\end{aligned}
$$

$$
f^{\prime}(x)
$$

$$
\begin{aligned}
a-b+1 & =3 a+2 b \\
\text { (1) }-2 a+1 & =3 b
\end{aligned}
$$

H
4. If $y=2 x(x-5)^{2}$, then $\frac{d y}{d x}=$

$$
\begin{aligned}
\text { So } a+b \\
=-1+1=0
\end{aligned}
$$

Slopes
(A) $6 x^{2}-40 x+50$
(B) $16 x^{3}-120 x^{2}+200 x$
(C) $6 x^{2}-20 x+50$
(D) $4 x-20$
(E) $6 x^{2}+50$
$y=2 x\left(x^{2}-10 x+25\right)$
$y=2 x^{3}-20 x^{2}+50 x$

$$
\frac{d y}{d x}=6 x^{2}-40 x+50
$$

D
5. $\lim _{h \rightarrow 0} \frac{6 \cos \left(\frac{\pi}{6}+h\right)-6 \cos \frac{\pi}{6}}{h}=f^{(}\left(\frac{\pi}{6}\right)$

$$
\begin{aligned}
& \text { for } \begin{aligned}
\text { (B) }-6 & \text { (C) } 6 \\
f^{\prime}(x) & =-6 \sin x \\
f^{\prime}\left(\frac{\pi}{6}\right) & =-6 \sin \frac{\pi}{6} \\
& =-6\left(\frac{1}{2}\right) \\
& =-3
\end{aligned}
\end{aligned}
$$

$$
\text { (D) }-3
$$

(E) 3

6. The graph of a function $f(x)$ is given above. The graph of $f(x)$ has a vertical asymptote at $x=-3$, a vertical tangent line at $x=1$, and x-intercepts at $x=-2$ and $x=0$. For what values of x is the function $f(x)$ is not differentiable?
(A) $-3,-1,1$ only
(B) $-3,-1$ only
(C) $-3,1$ only
(D) -3 only
(E) $-1,1$ only

$$
g(x)=\left\{\begin{array}{lll}
7 x^{2}-2, & x<2 \quad \ell_{x \rightarrow 2}-g(x)=26 \\
26, & x=2 \quad f(2)=26 \\
14 x-2, & x>2 & e_{x \rightarrow 2}+g(x)=26
\end{array}\right.
$$

7. Let g be the function given above. Which of the following statements are true about g ?
I. $\lim _{x \rightarrow 2} g(x)$ exists

$$
g^{\prime}(x)=\left\{\begin{array}{c}
14 x, \\
14, x>2
\end{array}\right.
$$

II. g is continuous at $x=2$

HA. g is differentiable at $x=2$

$$
\begin{array}{ll}
\lim _{x \rightarrow 2}-g^{\prime}(x)=28 & 28 \neq 14 \\
\ell_{x \rightarrow 2}^{\prime}+g^{\prime}(x)=14 & \text { so not } \\
& \text { diff able }
\end{array}
$$

(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III

$$
\lim _{x \rightarrow 0} \frac{\left(3 e^{x}-x\right)-3}{x}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

8. The above limit represents $f^{\prime}(c)$, the derivative of some function $f(x)$ at some $x=c$. What are $f(x)$ and $x=c$?
(A) $f(x)=e^{x}-x, c=3$
(B) $f(x)=3 e^{x}, c=0$
(C) $f(x)=3 e^{x}-x-3, c=0$
(D) $f(x)=3 e^{x}-x, c=0$
(E) $f(x)=3 e^{x}-x, c=3$

2
$\frac{d}{d x}\left[\frac{3 x^{3}-2 \sqrt{x}+1}{\sqrt{x}}\right]=\frac{d}{d x}\left[\begin{array}{c}5 / 2 \\ 3 x^{-1 / 2}-2+x^{-15}\end{array}\right]=\frac{15}{2} x^{3 / 2}-\frac{1}{2} x^{-3 / 2}=\frac{15 \sqrt{x^{3}}}{2}-\frac{1}{2 \sqrt{x^{3}}}$
(A) $\frac{15 \sqrt{x^{3}}}{2}-\frac{\sqrt{x}}{2}$
(B) $\frac{15 \sqrt{x^{3}}}{2}-\frac{1}{2 \sqrt{x^{3}}}$
(C) $\frac{18 \sqrt{x^{5}}-2}{x}$
(D) $3 \sqrt{x^{5}}-2+\frac{1}{\sqrt{x}}$
(E) $18 x^{2}$

Part TOO: Free Response -Do all work below in the space provided.
10. If $f(x)=5-3 x-2 x^{2}+x^{3}$

$$
\begin{aligned}
& \left(\text { a) Let } P(x)=f^{\prime}(x) \text {. Find } P(x) \text { and } P^{\prime}(x) .\right. \\
& P(x)=f^{\prime}(x)=-3-4 x+3 x^{2} \\
& P^{\prime}(x)=-4+6 x \sqrt{2}
\end{aligned}
$$

(b) Find $P(2)$ and $P^{\prime}(2)$.

$$
\begin{align*}
& p(2)=-3-8+12=1 \tag{3}\\
& p^{\prime}(2)=-4+12=8
\end{align*}
$$

(c) Find the equation of the tangent line, in Taylor Form, of $P(x)$ at $x=2$.

$$
\begin{gathered}
\text { pt: }(2,1), m=8 \\
y=1+8(x-2)
\end{gathered}
$$

(d) Find the equation of the normal line, in Taylor Form, of $P(x)$ at $x=2$.

(e) The equation of the normal line to $P(x)$ at $x=2$ intersects the graph of $P(x)$ at another x-value. Find this x-value. Show the work that leads to your answer.

$$
1-\frac{1}{8}(x-2)=-3-4 x+3 x^{2} \sqrt{7}
$$

*Malliply
both sides by 8 \qquad

$$
\begin{gathered}
8-(x-2)=-24-32 x+24 x^{2} \\
8-x+2=-24-32 x+24 x^{2} \\
24 x^{2}-31 x-34=0
\end{gathered}
$$

$$
(x-2)(24 x+17)=0
$$

$$
\begin{gathered}
x=2 \\
\neq 1 \\
\text { original }
\end{gathered}
$$

point of tangency
GF.R. points

