\qquad
\qquad
AP Calculus TEST: 4.1-4.4, NO CALCULATOR
Part Ain: Multiple Choice-Put the correct CAPITAL letter in the space to the left of each question.

A

$$
y=-x+k \quad y^{\prime}=-1, y^{\prime}=2 x+3
$$

1. In the $x y$-plane, the line $x+y=k$, where k is a constant, is tangent to the graph of $y=x^{2}+3 x+1$. What is the value of k ?
$-x+k=x+3 x+1$ (A) -3
(B) -2
(C) -1
(D) 0
(E) 1
$\begin{array}{rrr}2+k & =4-6+1 & 2 x+3 \\ k & =-1-1 \\ k & =-3 & 2 x\end{array} \quad 2-4$
$f(x)=\left\{\begin{array}{lll}c x+d & \text { for } x \leq 2 & \begin{array}{ll}\text { cont: } \\ 2<+d=4-2 c & \begin{array}{c}\text { so } 4+d=4-4 \\ d \lambda=-4\end{array} \\ x^{2}-c x & \text { for } x>2\end{array} \quad f^{\prime}= \begin{cases}c & \text { slopes } \\ 2 x-c & \\ \hline=4-c \\ 2 c=y \\ c=-2\end{cases} \end{array}\right.$

2. Let f be the function defined above, where c and d are constants. If f is differentible at $x=2$, what is the value of $c+d$?
$\frac{2(3 x+2)-3(2 x+3) \quad \text { (A) })-4}{(3 x+2)^{2}=\frac{6 x+4-6 x-9}{(3 x+2)^{2}}=\frac{-5}{(3 x+2)^{2}}}$.
(B) -2
(C)
(D) 2
(E) 4
D
3. If $y=\frac{2 x+3}{3 x+2}$, then $\frac{d y}{d x}=$ (A) $\frac{12 x+13}{(3 x+2)^{2}}$
(B) $\frac{12 x-13}{(3 x+2)^{2}}$
(C) $\frac{5}{(3 x+2)^{2}}$
(D) $\frac{-5}{(3 x+2)^{2}}$
(E) $\frac{2}{3}$
B
4. $\lim _{h \rightarrow 0} \frac{\begin{array}{c}3 \sec x \tan x \\ 3 \sec (\pi+h)-3 \sec \pi\end{array}}{h}=$
$\begin{array}{ll}\text { (A) }-1 & \text { (B) } 0\end{array}$
(C) -3
(D) π
(E) ONE
5. The graph of a function f is shown at right. At which value of x is f continuous, but not differentiable?
(A) a
(B) b
(C) c
(D) d
(E) e

$$
g(x)= \begin{cases}x+2, & x \leq 3 \\ 4 x-7, & x>3\end{cases}
$$

6. Let g be the function given above. Which of the following statements are true about g ?
I. $\lim _{x \rightarrow 3} g(x)$ exists
II. g is continuous at $x=3$
III. g is differentiable at $x=3$
(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III
7. The function f is continuous on $[-3,2]$ and has values given in the table below. If the equation $f(x)=2$ has at least 2 solutions in the interval $(-3,2)$ if $k=$

x	-3	0	2
$f(x)$	5	k	3.2

(A) 5
(B) 3.2
(C) 2
(D) 10
(E) -3

8. If $f(x)=(x-1) \sin x$, then $f^{\prime}(0)=(\mathrm{A})-2$
(B) -1
(C) 0
(D) 1
(E) 2

$$
\sin x+(x-1) \cos x \rightarrow 0-1(1)
$$

9. If $f(x)=3-4|x+5|$ for all x, then the value of the derivative $f^{\prime}(x)$ at $x=-5$ is
(A) -4
(B) 0
(C) 4
(D) 3
(E) ONE

Part Dos: Free Response-Do all work below the line.

10. If $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-6 x+4$
(a) Let $k(x)=f^{\prime}(x)$. Find $k(x)$ and $k^{\prime}(x)$.
(b) Find $k(-1)$ and $k^{\prime}(-1)$.
(c) Find the equation of the tangent line, in Taylor Form, of $k(x)$ at $x=-1$.

(6) D
(7) E
(d) Find the equation of the normal line, in Taylor Form, of $k(x)$ at $x=-1$.
(e) The equation of the normal line to $k(x)$ at $x=-1$ intersects the graph of $k(x)$ at another x-value. Find this x-value. Show the work that leads to your answer.

$$
\begin{aligned}
& \text { (a) } K(x)=f^{\prime}(x)=x^{2}-x-6 \\
& K^{\prime}(x)=2 x-1 \\
& \text { (b) } K(-1)=(-1)^{2}-(-1)-6=1+1-6=-4 \\
& K^{\prime}(-1)=2(-1)-1=-2-1=-3
\end{aligned}
$$

(c)

$$
\begin{aligned}
& (-1,-4), m=-3 \\
& y=-4-3(x+1)
\end{aligned}
$$

$$
\text { (d) }(-1,-4), m=\frac{1}{3}
$$

$$
y=-4+\frac{1}{3}(x+1)
$$

(c)

$$
\begin{aligned}
& x^{2}-x-6=-4+\frac{1}{3}(x+1) \\
& 3 x^{2}-3 x-18=-12+x+1 \\
& 3 x^{2}-4 x-7=0 \\
& (x+1)(3 x-7)=0 \\
& x=-1, x==\frac{7}{3} \\
& \text { So } x=x^{3}
\end{aligned}
$$

