\qquad
\qquad
BC Calculus TEST: 4.1-4.10 (not including LOG DIFF), NO CALCULATOR
Part Ens: Vielen choices-Put the correct CAPITAL letter in the space to the left of each question.
\qquad 1. What is the slope of the line tangent to the curve $y=\arctan (4 x)$ at the point at which $x=\frac{1}{4}$?
(A) 2
(B) $\frac{1}{2}$
(C) 0
(D) $-\frac{1}{2}$
(E) $-2 \frac{4}{1+16 x^{2}}$
$\rightarrow \frac{4}{1+1}=2$
A
2. In the $x y$-plane, the line $x+y=k$, where k is a constant, is tangent to the graph of $y=x^{2}+3 x+1$.

What is the value of $k ?-2-1=k=-3$
(A) -3
(B) -2
(C) -1
(D) 0
(E) 1
$\begin{array}{rl}2 x+3=-1 & y=4-6+1 \\ 2 x=-4 & y=-2+1 \\ x=-2 & y=-1\end{array}$
1
3. $\frac{d}{d x}\left[\cos ^{2}\left(x^{3}\right)\right]=2\left(\cos x^{3}\right)\left(-\sin x^{3}\right) 3 x^{2}$
(A) $6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(B) $6 x^{-6} \cos \left(x^{3}\right)$
(C) $\sin ^{2}\left(x^{3}\right)$
(D) $-6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(E) $-2 \sin \left(x^{3}\right) \cos \left(x^{3}\right)$

B

4. An equation of the line tangent to the graph of $y=\frac{2 x+3}{3 x-2}$ at the point $(1,5)$ is $\frac{(3 x-2)(2)-(2 x+3)(3)}{(3 x-2)^{2}}$
(A) $13 x-y=8$
(B) $13 x+y=18$
(C) $x-13 y=64$
(D) $x+13 y=66$
(E) $-2 x+3 y=13$

$y=5-13(x-1)$

5. If $f(x)=\ln \left(x+4+e^{-3 x}\right)$, then $f^{\prime}(0)$ is $\begin{aligned} y= & 5-13 x+13 \\ & 13 x+y=18\end{aligned}$
$\frac{1-3 e^{-3 x}}{x+4+e^{-3 x}} \frac{-2}{5}(\mathrm{~A})-\frac{2}{5}$
(B) $\frac{1}{5}$
(C) $\frac{1}{4}$
(D) $\frac{2}{5}$
(E) nonexistent

E
6. If $y=x^{2} \sin (2 x)$, then $\frac{d y}{d x}=$
$2 x \sin 2 x+x^{2} \cdot 2 \cos 2 x$
$2 x(\sin 2 x+x \cos 2 x)$ (A) $2 x \cos (2 x)$
(B) $4 x \cos (2 x)$
(C) $2 x[\sin (2 x)+\cos (2 x)]$
(D) $2 x[\sin (2 x)-x \cos (2 x)]$
(E) $2 x[\sin (2 x)+x \cos (2 x)]$
B
7. The $\lim _{h \rightarrow 0} \frac{\tan 3(x+h)-\tan 3 x}{h}$ is
(A) 0
(B) $3 \sec ^{2}(3 x)$
(C) $\sec ^{2}(3 x)$
(D) $3 \cot (3 x)$
(E) nonexistent
B
8. What is the slope of the line tangent to the curve $3 y^{2}-2 x^{2}=6-2 x y$ at the point $(3,2)$?
(A) 0
(B) $\frac{4}{9}$
(C) $\frac{7}{9}$
(D) $\frac{6}{7}$
(E) $\begin{aligned} 5 \frac{5}{3} \quad 6 y y^{\prime}-4 x & =-2 y-2 x y \\ 12 y^{\prime}-12 & =-4-6 y^{\prime} \\ 18 y^{\prime} & =8 \quad y^{\prime}=\frac{4}{9}\end{aligned}$
B
9. Let f be the function defined by $f(x)=x^{3}+x$. If $g(f(x))=x=f(g(x))$ and $g(2)=1$, what is the value of $g^{\prime}(2) ? \quad f^{\prime}=3 x^{2}+1, f^{\prime}(1)=4$
(A) $\frac{1}{13}$
(B) $\frac{1}{4}$
(C) $\frac{7}{4}$
(D) 4
(E) 13

Part Los Dos: Frei Response.
10. (1992 AB4/BC1) Consider the curve defined by the equation $y+\cos y=x+1$, for $0 \leq y \leq 2 \pi$.
(a) Find $\frac{d y}{d x}$ in terms of y.
(b) Write an equation for each vertical tangent to the curve. Show the work that leads to your answer.
(c) Show that $\frac{d^{2} y}{d x^{2}}=\frac{\cos y}{(1-\sin y)^{3}}$, then find the values of y for which $\frac{d^{2} y}{d x^{2}}<0$

$$
\begin{gathered}
\text { (a) } \frac{d y}{d x}-\sin y \frac{d y}{d x}=1 \\
\frac{d y}{d x}[1-\sin y]=1 \\
\frac{d y}{d x}=\frac{1}{1-\sin y}
\end{gathered}
$$

(b) Vert tangent when $1-\sin y=0$

when $y=\frac{\pi}{2}: \frac{\pi}{2}+\cos \frac{\pi}{2}=x+1$ $x=\frac{\pi}{2}-1$

$$
\begin{aligned}
(1) \frac{d y}{d x} & =(1-\sin y)^{-1} \\
\frac{d^{2} y}{d x^{2}} & =-(1-\sin y)^{-2} \cdot(-\cos y) \cdot \frac{d y}{d x} \\
\frac{d^{2} y}{d x^{2}} & =\frac{\cos y}{(1-\sin y)^{2}} \cdot \frac{1}{(1-\sin y)} \\
\frac{d^{2} y}{d x^{2}} & =\frac{\cos y}{(1-\sin y)^{3}}
\end{aligned}
$$

$\frac{d^{2} y}{d x^{2}}<0$ when cosy \& $1-\sin y$ are opposite signs. This happens for $\frac{\pi}{2}<y<\frac{3 \pi}{2}$

$$
80 \frac{d^{2} y}{d x^{2}}<0 \text { for } \frac{\pi}{2}<y<\frac{3 \pi}{2}
$$

