\qquad Date \qquad Period \qquad
AP Calculus TEST: 1.1-1.5
No Calculator
Part I: Multiple Choice-write the CAPITAL LETTER in the blank to the left of the problem number.

Use the graph of the function $h(x)$, shown below right, to answer questions 1-3.

\qquad 1. The smallest value of $a \in \mathbf{R}$ such that $h(x)$ is continuous on $[a, 3]$ is
(A) 0
(B) -1
(C) -0.9
(D) No such value exists
\qquad 2. On the interval $-4 \leq x \leq-1$, the IVT guarantees a value $-4<k<-1$ such that $h(k)=P$. According to the IVT, which of the following of P is NOT guaranteed?
(A) 0
(B) $\frac{1}{2}$
(C) -1
(D) 2
\qquad 3. $\lim _{x \rightarrow-1^{-}} h(h(x))=$
(A) 0
(B) 1
(C) 2
(D) -2
\qquad 4. The line $y=-5$ is a horizontal asymptote to the graph of which of the following functions?
(A) $y=e^{-x}+5$
(B) $y=\frac{25 x^{3}+2 x-1}{\sqrt{25 x^{6}+50}}$
(C) $y=\frac{50 x^{3}-2 x^{2}-7}{7+9 x+10 x^{3}}$
(D) $y=-\frac{\sin (10 x)}{5 x}$
__ 5. $\lim _{x \rightarrow-1} \frac{2-\sqrt{x+5}}{(x-1)(x+1)}=\quad$ (A) $\frac{1}{8} \quad$ (B) $-\frac{1}{8} \quad$ (C) $\frac{1}{2} \quad$ (D) $-\frac{1}{2}$

- 6. $\lim _{x \rightarrow 5} \frac{\frac{1}{x+2}-\frac{1}{7}}{x-5}=$
(A) -1
(B) $\frac{1}{49}$
(C) $-\frac{1}{49}$
(D) $\frac{1}{7}$
——7. Evaluate $\lim _{x \rightarrow 0^{+}}\left(\frac{(x-1)^{3}}{x^{3}-1}+\frac{4 \tan 3 x}{3 \tan 4 x}-\frac{x}{|x|}\right)=\quad \begin{array}{llll}\text { (A) } 1 & \text { (B) } 3 & \text { (C) } 8 & \text { (D) } \frac{16}{9}\end{array}$

$$
f(x)= \begin{cases}\frac{x^{2}+\sin ^{2} 2 x}{x^{2}}, & x \neq 0 \\ b, & x=0\end{cases}
$$

\qquad 8. Let f be the function defined above. For what value of b is f continuous at $x=0$?
(A) 2
(B) 3
(C) 5
(D) no such value exists
9. The function f is continuous on $[-4,5]$ and has values given in the table below. The equation $f(x)=6$ at least two solutions in the interval $(-4,5)$ if $p=$

x	-4	0	5
$f(x)$	1	p	4

(A) 6
(B) 6.1
(C) 5.9
(D) 5

Part II: Free Response: Answer all questions in the space provided.. Show all steps on part (e), and all parts, use proper notation, notation, notation. No Notation, No-No point!!
10. Let $f(x)$ be the totally awesome piece wise function given below.

$$
f(x)= \begin{cases}\frac{2 x^{5}+7 x^{3}-2 x+1}{\sqrt{9 x^{12}+2 x^{4}+11}}, & x \leq-3 \\ a x^{2}-b, & -3<x<-1 \\ 10, & x=-1 \\ 2 a x-3 b, & -1<x<-\frac{1}{2} \\ \frac{x^{2}-4 x+3}{x^{2}|2 x-2|}, & -\frac{1}{2} \leq x<3 \\ \frac{(x-3)^{2}}{4-x}, & x \geq 3\end{cases}
$$

(a) Find $\lim _{x \rightarrow-\infty} f(x)=$
(b) Find $\lim f(x)=$ $x \rightarrow 1^{-}$
(c) Find $\lim _{+} f(x)=$ $x \rightarrow 4^{+}$
(d) Is $f(x)$ continuous at $x=3$? Justify using the 3-step definition of continuity at a point.
(e) If a and b are constants that make $f(x)$ continuous at $x=-1$, what is the value of a ?

