\qquad Period \qquad

AP Calculus TEST: 1.1-1.5

No Calculator

Part I: Multiple Choice -write the CAPITAL LETTER in the blank to the left of the problem number.
Use the graph of the function $h(x)$, shown below right, to answer questions 1-3.

1. The smallest value of $a \in \mathbb{R}$ such that $h(x)$ is continuous on $[a, 3]$ is No hst real number to right of $x=-1$
(A) 0
(B) -1
(C) -0.9
(D) No such value exists
2. On the interval $-4 \leq x \leq-1$, the IVT guarantees a value $-4<k<-1$ such that $h(k)=P$. According to the IVT, which of the following of P is NOT guaranteed?
(A) 0
(B) $\frac{1}{2}$
(C) -1
(D) 2
3. $\lim _{x \rightarrow-1^{-}} h(h(x))=h\left(\varliminf_{x \rightarrow-1^{-}} h(x)\right)=\operatorname{lo}_{x \rightarrow 1^{-}} h(x)=0$

(A) 0
(B) 1
(C) 2
(D) -2
4. The line $y=-5$ is a horizontal asymptote to the graph of which of the following functions?
(A) $y=e^{-x}+5$
(B) $y=\frac{25 x^{3}+2 x-1}{\sqrt{25 x^{6}+50}}$
(C) $y=\frac{50 x^{3}-2 x^{2}-7}{7+9 x+10 x^{3}}$
(D) $y=-\frac{\sin (10 x)}{5 x}$

$$
y \approx \frac{25 x^{3}}{5 x^{3}} \rightarrow H A C y \pm 5
$$

A.
5. $\lim _{x \rightarrow-1} \frac{2-\sqrt{x+5}}{(x-1)(x+1)}=\frac{\%}{2+\sqrt{x+5}} \frac{2+\sqrt{x+5}}{2}$
(A) $\frac{1}{8}$
(B) $-\frac{1}{8}$
(C) $\frac{1}{2}$
(D) $\frac{1}{2}$
$\lim _{x \rightarrow-1} \frac{(4-(x+5))}{(x-1)(x+1)(2+\sqrt{x+5)}}$
$\lim _{x \rightarrow-1} \frac{-x-1}{(x-1)(x+1)(2+\sqrt{x+5})}$
$\lim _{x \rightarrow-1} \frac{(-1)(x+1)}{(x-1)(x+1)(2+\sqrt{x+5})}$

$$
\frac{-1}{(-2)(2+2)}
$$

$$
\frac{-1}{-8}
$$

C 6. $\lim _{x \rightarrow 5} \frac{\frac{1}{x+2}-\frac{1}{7}}{x-5}=\frac{(7(x+2))}{(7(x+2))}$
(A) -1
(B) $\frac{1}{49}$
(C) $-\frac{1}{49}$
(D) $\frac{1}{7}$
$\lim _{x \rightarrow 5} \frac{7-(x+2)}{(x-5)(7)(x+2)}$
$\lim _{x \rightarrow 5} \frac{-x+5}{(x-5)(7)(x+2)}$
$\lim _{x \rightarrow 5} \frac{(-1)(x-5)}{(x+5)(7)(x+2)}$
A $\quad-\frac{1}{49}$
7. Evaluate $\lim _{x \rightarrow 0^{+}}\left(\frac{(x-1)^{3}}{x^{3}-1}+\frac{4 \tan 3 x}{3 \tan 4 x}-\frac{x}{|x|}\right)=$ (A) 1
(B) 3
(C) 8
(D) $\frac{16}{9}$

$$
\begin{gathered}
\frac{(-1)^{3}}{-1}+\frac{4}{3}\left(\frac{3}{4}\right)-\frac{2}{|2|} \\
\frac{-1}{-1}+1-1 \\
1+1-1 \\
1
\end{gathered}
$$

$$
f(x)= \begin{cases}\frac{x^{2}+\sin ^{2} 2 x}{x^{2}}, & x \neq 0 \\ b, & x=0\end{cases}
$$

8. Let f be the function defined above. For what value of b is f continuous at $x=0$?

$$
\begin{gathered}
\text { (A) } 2 \text { (B) } 3 \quad \text { (C) } 5 \quad \text { (D) no such value exists } \\
\lim _{x \rightarrow 0} \frac{x^{2}+\sin ^{2} 2 x}{x^{2}} \\
\lim _{x \rightarrow 0}\left[\frac{x^{2}}{x^{2}}+\frac{(\sin 2 x)^{2}}{x^{2}}\right] \\
\lim _{x \rightarrow 0}\left[1+\frac{\sin 2 x}{2 x} \cdot \frac{\sin 2 x}{2 x}\left(\frac{2 \cdot 2}{1}\right)\right] \\
1+5 \cdot 1 \cdot 4
\end{gathered}
$$

9. The function f is continuous on $[-4,5]$ and has values given in the table below. The equation $f(x)=6$ at least two solutions in the interval $(-4,5)$ if $p=$

x	-4	0	5
$f(x)$	1	p	4

(A) 6
(B) 6.1
(C) 5.9
(D) 5

$$
p>6
$$

Part II: Free Response: Answer all questions in the space provided.. Show all steps on part (e), and all parts, use proper notation, notation, notation. No Notation, No-No point!!
10. Let $f(x)$ be the totally awesome piece wise function given below.

$$
f(x)= \begin{cases}\frac{2 x^{5}+7 x^{3}-2 x+1}{\sqrt{9 x^{12}+2 x^{4}+11}}, & x \leq-3 \\ a x^{2}-b, & -3<x<-1 \\ 10, & x=-1 \\ 2 a x-3 b, & -1<x<-\frac{1}{2} \\ \frac{x^{2}-4 x+3}{x^{2}|2 x-2|}, & x \geq 3 \\ \frac{(x-3)^{2}}{4-x}, & -x<3 \\ \end{cases}
$$

(a) Find $\lim _{x \rightarrow-\infty} f(x)=0(\sqrt{1}$

$$
\approx \lim _{x \rightarrow-\infty}^{x \rightarrow-\infty} \frac{2 x^{5}}{3 x^{6}}=0
$$

(b) Find $\lim _{x \rightarrow 1^{-}} f(x)=1$ (12) $\lim _{x \rightarrow 1}-\left[\frac{(x-3)\left[\frac{(x-1)}{\left.x^{2}\right]|2 x-2|}\right]}{]}\right.$

$$
\left[\frac{-2}{1}\right]\left[\frac{-1}{1-21}\right]
$$

$$
-2\left(-\frac{1}{2}\right)=1
$$

(c) Find $\lim _{x \rightarrow 4^{+}} f(x)=$ DNE or $-\infty$
(d) Is $f(x)$ continuous at $x=3$? Justify using the 3-step definition of continuity at a point.

$l_{x \rightarrow 3} \lim ^{+} f(x)=0$
$f(x)$ is continuous at $x=3$
Since $0=0=0$.
(e) If a and b are constants that make $f(x)$ continuous at $x=-1$, what is the value of a ?

$$
\begin{aligned}
& \text { It } a \text { and } b \text { are constants that make } f(x) \text { continu } \\
& \sum_{x \rightarrow-1} f(x)=a-b \\
& f(-1)=10 \\
& \sum_{x \rightarrow-1} f(x)=-2 a-3 b \\
& \delta_{0} \quad \begin{aligned}
& a-b=10 \rightarrow a=10+b \\
&-2 a-3 b=10 \\
&-2(10+b)-36=10 \\
&-20-2 b-3 b=10 \\
&-5 b=30 \\
& b=-6 \\
& \text { So, } a=10-6 \\
& a=4
\end{aligned}
\end{aligned}
$$

