\qquad Date \qquad Period \qquad
AP Calculus TEST: 3.1-3.5—Limits and Continuity. No Calculator
Part I: Multiple Choice -write the CAPITAL LETTER in the blank to the left of the problem number.

Use the graph of the function $g(x)$ shown at right to answer questions 1-3.
\qquad 1. $\lim _{x \rightarrow-1^{+}} g\left(x^{2}\right)+\lim _{x \rightarrow-2}[g(x)]^{2}+g(-1)=$
(A) 10
(B) 11
(C) 12
(D) 13
(E) ONE
\qquad 2. $\lim _{x \rightarrow 3^{-}} g(g(x))=$
(A) 0
(B) 3
(C) 2
(D) 1
(E) ONE
\qquad 3. Find the number $x=b$ such that $g(x)$ is continuous in
 $(-1, b)$ but not in $[-1, b]$.
(A) -1
(B) 0
(C) $\frac{1}{2}$
(D) 0.999999
(E) 1
_4. Evaluate $\lim _{x \rightarrow 0}\left(\frac{3 \cot 6 x}{2 \csc 2 x}+1\right)$
(A) ONE
(B) 0
(C) $\frac{11}{2}$
(D) $\frac{3}{2}$
(E) 3
\qquad 5. Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos 4 x}{x+1}$
(A) DNE
(B) 0
(C) 1
(D) -1
(E) 4

- 6. If $f(x)=\left\{\begin{array}{ll}2 x^{2}+1, & x<-1 \\ -\frac{3}{x}, & x \geq-1\end{array}\right.$, which of the following is NOT true?
(A) $\lim _{x \rightarrow-1^{+}} f(x)=f(-1)$
(B) $f(x)$ is continuous at $x=-1$
(C) $\lim _{x \rightarrow \infty} f(x)=0$
(D) $f(x)$ has a vertical asymptote at $x=0$
(E) $\lim _{x \rightarrow-1^{-}} f(x)=-1$

7. If $\sec x \leq M(x) \leq e^{x}$, for all x in an interval containing $x=0$, then $\lim _{x \rightarrow 0} M(x)=$
(A) ONE
(B) 0
(C) 1
(D) -1
(E) Not enough information
_- 8. If $g(x)=\cos x$, then on the interval $\left[\frac{7 \pi}{6}, \frac{7 \pi}{4}\right]$, by the IVT, $g(x)$ MUST equal what value for some $x \in\left(\frac{7 \pi}{6}, \frac{7 \pi}{4}\right) ?$
(A) -1
(B) 1
(C) $\frac{4 \pi}{3}$
(D) 0
(E) $\frac{\sqrt{3}}{2}$

Part II: Free Response:

9. Evaluate 5 of the 6. For each, show all steps and work. Careful rewriting the "lim" each time!!!
a) $\lim _{x \rightarrow 0} \frac{\tan 2 x+x}{5 x}=$
b) $\lim _{x \rightarrow 0} \frac{4 x \sin x}{1-\cos x}=$
c) $\lim _{x \rightarrow-2} \frac{x^{2}-4}{\sqrt{6+x}-2}=$
d) $\lim _{x \rightarrow 3} \frac{\frac{2}{x+2}-\frac{2}{5}}{x-3}=$
e) $\lim _{x \rightarrow-\infty} \frac{4 x^{5}+2 x^{2}-3 x+1}{\sqrt{9 x^{10}+11 x^{9}+12 x^{2}+13 x+14}}=\quad \quad$ f) $\lim _{x \rightarrow 5^{-}} \frac{x^{2}|10-2 x|}{\sin \left(\frac{x \pi}{6}\right)\left(3 x^{2}-18 x+15\right)}=$
